Graded algebras of finite type #
We show that graded algebras of finite type are generated by homogeneous elements of positive degree.
theorem
GradedAlgebra.exists_finset_adjoin_eq_top_and_homogeneous
{R₀ : Type u_1}
{ι : Type u_2}
{S : Type u_3}
[DecidableEq ι]
[AddCommMonoid ι]
[CommRing R₀]
[CommRing S]
[Algebra R₀ S]
(𝒜 : ι → Submodule R₀ S)
[GradedAlgebra 𝒜]
[Algebra.FiniteType (↥(𝒜 0)) S]
:
∃ (s : Finset S), Algebra.adjoin ↥(𝒜 0) ↑s = ⊤ ∧ ∀ i ∈ s, SetLike.IsHomogeneousElem 𝒜 i
theorem
GradedAlgebra.exists_finset_adjoin_eq_top_and_homogeneous_ne_zero
{R₀ : Type u_1}
{ι : Type u_2}
{S : Type u_3}
[DecidableEq ι]
[AddCommMonoid ι]
[CommRing R₀]
[CommRing S]
[Algebra R₀ S]
(𝒜 : ι → Submodule R₀ S)
[GradedAlgebra 𝒜]
[Algebra.FiniteType (↥(𝒜 0)) S]
: