Documentation

Mathlib.RingTheory.GradedAlgebra.FiniteType

Graded algebras of finite type #

We show that graded algebras of finite type are generated by homogeneous elements of positive degree.

theorem GradedAlgebra.exists_finset_adjoin_eq_top_and_homogeneous {R₀ : Type u_1} {ι : Type u_2} {S : Type u_3} [DecidableEq ι] [AddCommMonoid ι] [CommRing R₀] [CommRing S] [Algebra R₀ S] (𝒜 : ιSubmodule R₀ S) [GradedAlgebra 𝒜] [Algebra.FiniteType (↥(𝒜 0)) S] :
∃ (s : Finset S), Algebra.adjoin (𝒜 0) s = is, SetLike.IsHomogeneousElem 𝒜 i
theorem GradedAlgebra.exists_finset_adjoin_eq_top_and_homogeneous_ne_zero {R₀ : Type u_1} {ι : Type u_2} {S : Type u_3} [DecidableEq ι] [AddCommMonoid ι] [CommRing R₀] [CommRing S] [Algebra R₀ S] (𝒜 : ιSubmodule R₀ S) [GradedAlgebra 𝒜] [Algebra.FiniteType (↥(𝒜 0)) S] :
∃ (s : Finset S), Algebra.adjoin (𝒜 0) s = is, ∃ (n : ι), n 0 i 𝒜 n