Documentation

Mathlib.RingTheory.HopfAlgebra.TensorProduct

Tensor products of Hopf algebras #

We define the Hopf algebra instance on the tensor product of two Hopf algebras.

@[reducible, inline]
noncomputable abbrev HopfAlgebra.ofAlgHom {R : Type u_1} {A : Type u_2} [CommSemiring R] [CommSemiring A] [Bialgebra R A] (antipode : A →ₐ[R] A) (mul_antipode_rTensor_comul : (Algebra.TensorProduct.lift antipode (AlgHom.id R A) ).comp (Bialgebra.comulAlgHom R A) = (Algebra.ofId R A).comp (Bialgebra.counitAlgHom R A)) (mul_antipode_lTensor_comul : (Algebra.TensorProduct.lift (AlgHom.id R A) antipode ).comp (Bialgebra.comulAlgHom R A) = (Algebra.ofId R A).comp (Bialgebra.counitAlgHom R A)) :

Upgrade a bialgebra to a Hopf algebra by specifying the antipode as an algebra map with appropriate conditions.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    noncomputable instance TensorProduct.instHopfAlgebra {R : Type u_1} {S : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Algebra R S] [HopfAlgebra R A] [HopfAlgebra S B] [Algebra R B] [IsScalarTower R S B] :
    Equations
    • One or more equations did not get rendered due to their size.