Documentation

Mathlib.RingTheory.Polynomial.IntegralNormalization

Theory of monic polynomials #

We define integralNormalization, which relate arbitrary polynomials to monic ones.

noncomputable def Polynomial.integralNormalization {R : Type u} [Semiring R] (p : Polynomial R) :

If p : R[X] is a nonzero polynomial with root z, integralNormalization p is a monic polynomial with root leadingCoeff f * z.

Moreover, integralNormalization 0 = 0.

Equations
Instances For
    @[simp]
    theorem Polynomial.integralNormalization_C {R : Type u} [Semiring R] {x : R} (hx : x 0) :
    @[deprecated Polynomial.support_integralNormalization_subset (since := "2024-11-30")]

    Alias of Polynomial.support_integralNormalization_subset.

    theorem Polynomial.integralNormalization_eval₂_leadingCoeff_mul_of_commute {R : Type u} [Semiring R] {p : Polynomial R} {A : Type u_1} [Semiring A] (h : 1 p.natDegree) (f : R →+* A) (x : A) (h₁ : Commute (f p.leadingCoeff) x) (h₂ : ∀ {r r' : R}, Commute (f r) (f r')) :
    theorem Polynomial.integralNormalization_eval₂_eq_zero_of_commute {R : Type u} [Semiring R] {A : Type u_1} [Semiring A] {p : Polynomial R} (f : R →+* A) {z : A} (hz : eval₂ f z p = 0) (h₁ : Commute (f p.leadingCoeff) z) (h₂ : ∀ {r r' : R}, Commute (f r) (f r')) (inj : ∀ (x : R), f x = 0x = 0) :
    theorem Polynomial.integralNormalization_eval₂_eq_zero {R : Type u} {S : Type v} [Semiring R] [CommSemiring S] {p : Polynomial R} (f : R →+* S) {z : S} (hz : eval₂ f z p = 0) (inj : ∀ (x : R), f x = 0x = 0) :
    theorem Polynomial.integralNormalization_aeval_eq_zero {S : Type v} {A : Type u_1} [CommSemiring S] [Semiring A] [Algebra S A] {f : Polynomial S} {z : A} (hz : (aeval z) f = 0) (inj : ∀ (x : S), (algebraMap S A) x = 0x = 0) :