Binomial Power Series #
We introduce formal power series of the form (1 + X) ^ r
, where r
is an element of a
commutative binomial ring R
.
Main Definitions #
PowerSeries.binomialSeries
: A power series expansion of(1 + X) ^ r
, wherer
is an element of a commutative binomial ringR
.
Main Results #
PowerSeries.binomial_add
: Adding exponents yields multiplication of series.PowerSeries.binomialSeries_nat
: whenr
is a natural number, we get(1 + X) ^ r
.PowerSeries.rescale_neg_one_invOneSubPow
: The image of(1 - X) ^ (-d)
under the mapX ↦ (-X)
is(1 + X) ^ (-d)
TODO #
- When
A
is a commutativeR
-algebra, the exponentiation action makes the multiplicative group1 + XA[[X]]
into anR
-module.
noncomputable def
PowerSeries.binomialSeries
{R : Type u_1}
[CommRing R]
[BinomialRing R]
(A : Type u_3)
[One A]
[SMul R A]
(r : R)
:
The power series for (1 + X) ^ r
.
Equations
- PowerSeries.binomialSeries A r = PowerSeries.mk fun (n : ℕ) => Ring.choose r n • 1
Instances For
@[simp]
theorem
PowerSeries.binomialSeries_coeff
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[BinomialRing R]
[Semiring A]
[SMul R A]
(r : R)
(n : ℕ)
:
@[simp]
theorem
PowerSeries.binomialSeries_add
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[BinomialRing R]
[Semiring A]
[Algebra R A]
(r s : R)
:
@[simp]