Documentation

Mathlib.RingTheory.PowerSeries.Binomial

Binomial Power Series #

We introduce formal power series of the form (1 + X) ^ r, where r is an element of a commutative binomial ring R.

Main Definitions #

Main Results #

TODO #

noncomputable def PowerSeries.binomialSeries {R : Type u_1} [CommRing R] [BinomialRing R] (A : Type u_3) [One A] [SMul R A] (r : R) :

The power series for (1 + X) ^ r.

Equations
Instances For
    @[simp]
    theorem PowerSeries.binomialSeries_coeff {R : Type u_1} {A : Type u_2} [CommRing R] [BinomialRing R] [Semiring A] [SMul R A] (r : R) (n : ) :
    @[simp]
    theorem PowerSeries.binomialSeries_add {R : Type u_1} {A : Type u_2} [CommRing R] [BinomialRing R] [Semiring A] [Algebra R A] (r s : R) :
    @[simp]
    theorem PowerSeries.binomialSeries_nat {A : Type u_2} [CommRing A] (d : ) :
    binomialSeries A d = (1 + X) ^ d