Documentation

Mathlib.RingTheory.PowerSeries.WellKnown

Definition of well-known power series #

In this file we define the following power series:

def PowerSeries.invUnitsSub {R : Type u_1} [Ring R] (u : Rˣ) :

The power series for 1 / (u - x).

Equations
Instances For
    @[simp]
    theorem PowerSeries.coeff_invUnitsSub {R : Type u_1} [Ring R] (u : Rˣ) (n : ) :
    (coeff R n) (invUnitsSub u) = 1 /ₚ u ^ (n + 1)
    @[simp]
    @[simp]
    theorem PowerSeries.invUnitsSub_mul_X {R : Type u_1} [Ring R] (u : Rˣ) :
    invUnitsSub u * X = invUnitsSub u * (C R) u - 1
    @[simp]
    theorem PowerSeries.invUnitsSub_mul_sub {R : Type u_1} [Ring R] (u : Rˣ) :
    invUnitsSub u * ((C R) u - X) = 1
    theorem PowerSeries.map_invUnitsSub {R : Type u_1} {S : Type u_2} [Ring R] [Ring S] (f : R →+* S) (u : Rˣ) :
    theorem PowerSeries.mk_one_mul_one_sub_eq_one (S : Type u_1) [CommRing S] :
    mk 1 * (1 - X) = 1

    (1 + X + X^2 + ...) * (1 - X) = 1.

    Note that the power series 1 + X + X^2 + ... is written as mk 1 where 1 is the constant function so that mk 1 is the power series with all coefficients equal to one.

    theorem PowerSeries.mk_one_pow_eq_mk_choose_add (S : Type u_1) [CommRing S] (d : ) :
    mk 1 ^ (d + 1) = mk fun (n : ) => ((d + n).choose d)

    Note that mk 1 is the constant function 1 so the power series 1 + X + X^2 + .... This theorem states that for any d : ℕ, (1 + X + X^2 + ... : S⟦X⟧) ^ (d + 1) is equal to the power series mk fun n => Nat.choose (d + n) d : S⟦X⟧.

    noncomputable def PowerSeries.invOneSubPow (S : Type u_1) [CommRing S] :

    Given a natural number d : ℕ and a commutative ring S, PowerSeries.invOneSubPow S d is the multiplicative inverse of (1 - X) ^ d in S⟦X⟧ˣ. When d is 0, PowerSeries.invOneSubPow S d will just be 1. When d is positive, PowerSeries.invOneSubPow S d will be the power series mk fun n => Nat.choose (d - 1 + n) (d - 1).

    Equations
    Instances For
      theorem PowerSeries.invOneSubPow_val_eq_mk_sub_one_add_choose_of_pos (S : Type u_1) [CommRing S] (d : ) (h : 0 < d) :
      (invOneSubPow S d) = mk fun (n : ) => ((d - 1 + n).choose (d - 1))
      theorem PowerSeries.invOneSubPow_val_succ_eq_mk_add_choose (S : Type u_1) [CommRing S] (d : ) :
      (invOneSubPow S (d + 1)) = mk fun (n : ) => ((d + n).choose d)

      The theorem PowerSeries.mk_one_mul_one_sub_eq_one implies that 1 - X is a unit in S⟦X⟧ whose inverse is the power series 1 + X + X^2 + .... This theorem states that for any d : ℕ, PowerSeries.invOneSubPow S d is equal to (1 - X)⁻¹ ^ d.

      theorem PowerSeries.mk_add_choose_mul_one_sub_pow_eq_one (S : Type u_1) [CommRing S] (d : ) :
      (mk fun (n : ) => ((d + n).choose d)) * (1 - X) ^ (d + 1) = 1
      def PowerSeries.exp (A : Type u_1) [Ring A] [Algebra A] :

      Power series for the exponential function at zero.

      Equations
      Instances For
        def PowerSeries.sin (A : Type u_1) [Ring A] [Algebra A] :

        Power series for the sine function at zero.

        Equations
        Instances For
          def PowerSeries.cos (A : Type u_1) [Ring A] [Algebra A] :

          Power series for the cosine function at zero.

          Equations
          Instances For
            @[simp]
            theorem PowerSeries.coeff_exp {A : Type u_1} [Ring A] [Algebra A] (n : ) :
            (coeff A n) (exp A) = (algebraMap A) (1 / n.factorial)
            @[simp]
            theorem PowerSeries.constantCoeff_exp {A : Type u_1} [Ring A] [Algebra A] :
            (constantCoeff A) (exp A) = 1
            @[simp]
            theorem PowerSeries.map_exp {A : Type u_1} {A' : Type u_2} [Ring A] [Ring A'] [Algebra A] [Algebra A'] (f : A →+* A') :
            (map f) (exp A) = exp A'
            @[simp]
            theorem PowerSeries.map_sin {A : Type u_1} {A' : Type u_2} [Ring A] [Ring A'] [Algebra A] [Algebra A'] (f : A →+* A') :
            (map f) (sin A) = sin A'
            @[simp]
            theorem PowerSeries.map_cos {A : Type u_1} {A' : Type u_2} [Ring A] [Ring A'] [Algebra A] [Algebra A'] (f : A →+* A') :
            (map f) (cos A) = cos A'
            theorem PowerSeries.exp_mul_exp_eq_exp_add {A : Type u_1} [CommRing A] [Algebra A] (a b : A) :
            (rescale a) (exp A) * (rescale b) (exp A) = (rescale (a + b)) (exp A)

            Shows that $e^{aX} * e^{bX} = e^{(a + b)X}$

            theorem PowerSeries.exp_mul_exp_neg_eq_one {A : Type u_1} [CommRing A] [Algebra A] :
            exp A * evalNegHom (exp A) = 1

            Shows that $e^{x} * e^{-x} = 1$

            theorem PowerSeries.exp_pow_eq_rescale_exp {A : Type u_1} [CommRing A] [Algebra A] (k : ) :
            exp A ^ k = (rescale k) (exp A)

            Shows that $(e^{X})^k = e^{kX}$.

            theorem PowerSeries.exp_pow_sum {A : Type u_1} [CommRing A] [Algebra A] (n : ) :
            kFinset.range n, exp A ^ k = mk fun (p : ) => kFinset.range n, k ^ p * (algebraMap A) (↑p.factorial)⁻¹

            Shows that $\sum_{k = 0}^{n - 1} (e^{X})^k = \sum_{p = 0}^{\infty} \sum_{k = 0}^{n - 1} \frac{k^p}{p!}X^p$.