The meta properties of integral ring homomorphisms. #
theorem
RingHom.isIntegral_stableUnderComposition :
RingHom.StableUnderComposition fun {R S : Type u_1} [CommRing R] [CommRing S] (f : R →+* S) => f.IsIntegral
theorem
RingHom.isIntegral_respectsIso :
RingHom.RespectsIso fun {R S : Type u_1} [CommRing R] [CommRing S] (f : R →+* S) => f.IsIntegral
theorem
RingHom.isIntegral_isStableUnderBaseChange :
RingHom.IsStableUnderBaseChange fun {R S : Type u_1} [CommRing R] [CommRing S] (f : R →+* S) => f.IsIntegral
theorem
RingHom.isIntegral_ofLocalizationSpan :
RingHom.OfLocalizationSpan fun {R S : Type u_1} [CommRing R] [CommRing S] (x : R →+* S) => x.IsIntegral
S
is an integral R
-algebra if there exists a set { r }
that
spans R
such that each Sᵣ
is an integral Rᵣ
-algebra.