Documentation

Mathlib.RingTheory.RootsOfUnity.Lemmas

More results on primitive roots of unity #

(We put these in a separate file because of the KummerExtension import.)

Assume that μ is a primitive nth root of unity in an integral domain R. Then $$ \prod_{k=1}^{n-1} (1 - \mu^k) = n \,; $$ see IsPrimitiveRoot.prod_one_sub_pow_eq_order and its variant IsPrimitiveRoot.prod_pow_sub_one_eq_order in terms of ∏ (μ^k - 1).

We use this to deduce that n is divisible by (μ - 1)^k in ℤ[μ] ⊆ R when k < n.

theorem IsPrimitiveRoot.prod_one_sub_pow_eq_order {R : Type u_1} [CommRing R] [IsDomain R] {n : } {μ : R} (hμ : IsPrimitiveRoot μ (n + 1)) :
kFinset.range n, (1 - μ ^ (k + 1)) = n + 1

If μ is a primitive nth root of unity in R, then ∏(1≤k<n) (1-μ^k) = n. (Stated with n+1 in place of n to avoid the condition n ≠ 0.)

theorem IsPrimitiveRoot.prod_pow_sub_one_eq_order {R : Type u_1} [CommRing R] [IsDomain R] {n : } {μ : R} (hμ : IsPrimitiveRoot μ (n + 1)) :
(-1) ^ n * kFinset.range n, (μ ^ (k + 1) - 1) = n + 1

If μ is a primitive nth root of unity in R, then (-1)^(n-1) * ∏(1≤k<n) (μ^k-1) = n. (Stated with n+1 in place of n to avoid the condition n ≠ 0.)

theorem IsPrimitiveRoot.self_sub_one_pow_dvd_order {R : Type u_1} [CommRing R] [IsDomain R] {k n : } (hn : k < n) {μ : R} (hμ : IsPrimitiveRoot μ n) :
zAlgebra.adjoin {μ}, n = z * (μ - 1) ^ k

If μ is a primitive nth root of unity in R and k < n, then n is divisible by (μ-1)^k in ℤ[μ] ⊆ R.