Unique factorization #
Main Definitions #
WfDvdMonoid
holds forMonoid
s for which a strict divisibility relation is well-founded.UniqueFactorizationMonoid
holds forWfDvdMonoid
s whereIrreducible
is equivalent toPrime
Well-foundedness of the strict version of ∣, which is equivalent to the descending chain condition on divisibility and to the ascending chain condition on principal ideals in an integral domain.
Equations
- WfDvdMonoid α = IsWellFounded α DvdNotUnit
Instances For
unique factorization monoids.
These are defined as CancelCommMonoidWithZero
s with well-founded strict divisibility
relations, but this is equivalent to more familiar definitions:
Each element (except zero) is uniquely represented as a multiset of irreducible factors. Uniqueness is only up to associated elements.
Each element (except zero) is non-uniquely represented as a multiset of prime factors.
To define a UFD using the definition in terms of multisets
of irreducible factors, use the definition of_exists_unique_irreducible_factors
To define a UFD using the definition in terms of multisets
of prime factors, use the definition of_exists_prime_factors
- wf : WellFounded DvdNotUnit
- irreducible_iff_prime : ∀ {a : α}, Irreducible a ↔ Prime a
Instances
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Noncomputably determines the multiset of prime factors.
Equations
- UniqueFactorizationMonoid.factors a = if h : a = 0 then 0 else Classical.choose ⋯