Witt vectors over a perfect ring #
This file establishes that Witt vectors over a perfect field are a discrete valuation ring.
When k
is a perfect ring, a nonzero a : ๐ k
can be written as p^m * b
for some m : โ
and
b : ๐ k
with nonzero 0th coefficient.
When k
is also a field, this b
can be chosen to be a unit of ๐ k
.
Main declarations #
WittVector.exists_eq_pow_p_mul
: the existence of this elementb
over a perfect ringWittVector.exists_eq_pow_p_mul'
: the existence of this unitb
over a perfect fieldWittVector.isDiscreteValuationRing
:๐ k
is a discrete valuation ring ifk
is a perfect field
@[irreducible]
noncomputable def
WittVector.inverseCoeff
{p : โ}
[hp : Fact (Nat.Prime p)]
{k : Type u_1}
[CommRing k]
[CharP k p]
(a : kหฃ)
(A : WittVector p k)
:
โ โ k
Recursively defines the sequence of coefficients for the inverse to a Witt vector whose first entry is a unit.
Equations
- WittVector.inverseCoeff a A 0 = โaโปยน
- WittVector.inverseCoeff a A n.succ = WittVector.succNthValUnits n a A fun (i : Fin (n + 1)) => WittVector.inverseCoeff a A โi
Instances For
def
WittVector.mkUnit
{p : โ}
[hp : Fact (Nat.Prime p)]
{k : Type u_1}
[CommRing k]
[CharP k p]
{a : kหฃ}
{A : WittVector p k}
(hA : A.coeff 0 = โa)
:
(WittVector p k)หฃ
Upgrade a Witt vector A
whose first entry A.coeff 0
is a unit to be, itself, a unit in ๐ k
.
Equations
- WittVector.mkUnit hA = Units.mkOfMulEqOne A { coeff := WittVector.inverseCoeff a A } โฏ
Instances For
@[simp]
theorem
WittVector.coe_mkUnit
{p : โ}
[hp : Fact (Nat.Prime p)]
{k : Type u_1}
[CommRing k]
[CharP k p]
{a : kหฃ}
{A : WittVector p k}
(hA : A.coeff 0 = โa)
:
โ(WittVector.mkUnit hA) = A
theorem
WittVector.irreducible
(p : โ)
[hp : Fact (Nat.Prime p)]
{k : Type u_1}
[Field k]
[CharP k p]
:
Irreducible โp
theorem
WittVector.exists_eq_pow_p_mul
{p : โ}
[hp : Fact (Nat.Prime p)]
{k : Type u_1}
[CommRing k]
[CharP k p]
[PerfectRing k p]
(a : WittVector p k)
(ha : a โ 0)
:
theorem
WittVector.exists_eq_pow_p_mul'
{p : โ}
[hp : Fact (Nat.Prime p)]
{k : Type u_1}
[Field k]
[CharP k p]
[PerfectRing k p]
(a : WittVector p k)
(ha : a โ 0)
:
theorem
WittVector.isDiscreteValuationRing
{p : โ}
[hp : Fact (Nat.Prime p)]
{k : Type u_1}
[Field k]
[CharP k p]
[PerfectRing k p]
:
The ring of Witt Vectors of a perfect field of positive characteristic is a DVR.