Documentation

Mathlib.SetTheory.ZFC.Cardinal

Cardinalities of ZFC sets #

In this file, we define the cardinalities of ZFC sets as ZFSet.{u} → Cardinal.{u}.

Definitions #

The cardinality of a ZFC set.

Equations
Instances For

    ZFSet.card x is equal to the cardinality of x as a set of ZFSets.

    theorem ZFSet.card_mono {x y : ZFSet.{u}} (h : x y) :
    @[simp]
    theorem ZFSet.card_insert {x y : ZFSet.{u}} (h : xy) :
    (insert x y).card = y.card + 1
    @[simp]
    theorem ZFSet.card_pair_of_ne {x y : ZFSet.{u}} (h : x y) :
    {x, y}.card = 2
    @[simp]
    theorem ZFSet.iSup_card_le_card_iUnion {α : Type u} [Small.{v, u} α] {f : αZFSet.{v}} :
    ⨆ (i : α), (f i).card (iUnion fun (i : α) => f i).card
    theorem ZFSet.lift_card_iUnion_le_sum_card {α : Type u} [Small.{v, u} α] {f : αZFSet.{v}} :
    Cardinal.lift.{u, v} (iUnion fun (i : α) => f i).card Cardinal.sum fun (i : α) => (f i).card