Documentation
Mathlib
.
Tactic
.
CC
.
Lemmas
Search
Google site search
return to top
source
Imports
Init
Mathlib.Init
Imported by
Mathlib
.
Tactic
.
CC
.
iff_eq_of_eq_true_left
Mathlib
.
Tactic
.
CC
.
iff_eq_of_eq_true_right
Mathlib
.
Tactic
.
CC
.
iff_eq_true_of_eq
Mathlib
.
Tactic
.
CC
.
and_eq_of_eq_true_left
Mathlib
.
Tactic
.
CC
.
and_eq_of_eq_true_right
Mathlib
.
Tactic
.
CC
.
and_eq_of_eq_false_left
Mathlib
.
Tactic
.
CC
.
and_eq_of_eq_false_right
Mathlib
.
Tactic
.
CC
.
and_eq_of_eq
Mathlib
.
Tactic
.
CC
.
or_eq_of_eq_true_left
Mathlib
.
Tactic
.
CC
.
or_eq_of_eq_true_right
Mathlib
.
Tactic
.
CC
.
or_eq_of_eq_false_left
Mathlib
.
Tactic
.
CC
.
or_eq_of_eq_false_right
Mathlib
.
Tactic
.
CC
.
or_eq_of_eq
Mathlib
.
Tactic
.
CC
.
imp_eq_of_eq_true_left
Mathlib
.
Tactic
.
CC
.
imp_eq_of_eq_true_right
Mathlib
.
Tactic
.
CC
.
imp_eq_of_eq_false_left
Mathlib
.
Tactic
.
CC
.
imp_eq_of_eq_false_right
Mathlib
.
Tactic
.
CC
.
not_imp_eq_of_eq_false_right
Mathlib
.
Tactic
.
CC
.
imp_eq_true_of_eq
Mathlib
.
Tactic
.
CC
.
not_eq_of_eq_true
Mathlib
.
Tactic
.
CC
.
not_eq_of_eq_false
Mathlib
.
Tactic
.
CC
.
false_of_a_eq_not_a
Mathlib
.
Tactic
.
CC
.
if_eq_of_eq_true
Mathlib
.
Tactic
.
CC
.
if_eq_of_eq_false
Mathlib
.
Tactic
.
CC
.
if_eq_of_eq
Mathlib
.
Tactic
.
CC
.
eq_true_of_and_eq_true_left
Mathlib
.
Tactic
.
CC
.
eq_true_of_and_eq_true_right
Mathlib
.
Tactic
.
CC
.
eq_false_of_or_eq_false_left
Mathlib
.
Tactic
.
CC
.
eq_false_of_or_eq_false_right
Mathlib
.
Tactic
.
CC
.
eq_false_of_not_eq_true
Mathlib
.
Tactic
.
CC
.
eq_true_of_not_eq_false
Lemmas use by the congruence closure module
source
theorem
Mathlib
.
Tactic
.
CC
.
iff_eq_of_eq_true_left
{a b :
Prop
}
(h :
a
=
True
)
:
(
a
↔
b
)
=
b
source
theorem
Mathlib
.
Tactic
.
CC
.
iff_eq_of_eq_true_right
{a b :
Prop
}
(h :
b
=
True
)
:
(
a
↔
b
)
=
a
source
theorem
Mathlib
.
Tactic
.
CC
.
iff_eq_true_of_eq
{a b :
Prop
}
(h :
a
=
b
)
:
(
a
↔
b
)
=
True
source
theorem
Mathlib
.
Tactic
.
CC
.
and_eq_of_eq_true_left
{a b :
Prop
}
(h :
a
=
True
)
:
(
a
∧
b
)
=
b
source
theorem
Mathlib
.
Tactic
.
CC
.
and_eq_of_eq_true_right
{a b :
Prop
}
(h :
b
=
True
)
:
(
a
∧
b
)
=
a
source
theorem
Mathlib
.
Tactic
.
CC
.
and_eq_of_eq_false_left
{a b :
Prop
}
(h :
a
=
False
)
:
(
a
∧
b
)
=
False
source
theorem
Mathlib
.
Tactic
.
CC
.
and_eq_of_eq_false_right
{a b :
Prop
}
(h :
b
=
False
)
:
(
a
∧
b
)
=
False
source
theorem
Mathlib
.
Tactic
.
CC
.
and_eq_of_eq
{a b :
Prop
}
(h :
a
=
b
)
:
(
a
∧
b
)
=
a
source
theorem
Mathlib
.
Tactic
.
CC
.
or_eq_of_eq_true_left
{a b :
Prop
}
(h :
a
=
True
)
:
(
a
∨
b
)
=
True
source
theorem
Mathlib
.
Tactic
.
CC
.
or_eq_of_eq_true_right
{a b :
Prop
}
(h :
b
=
True
)
:
(
a
∨
b
)
=
True
source
theorem
Mathlib
.
Tactic
.
CC
.
or_eq_of_eq_false_left
{a b :
Prop
}
(h :
a
=
False
)
:
(
a
∨
b
)
=
b
source
theorem
Mathlib
.
Tactic
.
CC
.
or_eq_of_eq_false_right
{a b :
Prop
}
(h :
b
=
False
)
:
(
a
∨
b
)
=
a
source
theorem
Mathlib
.
Tactic
.
CC
.
or_eq_of_eq
{a b :
Prop
}
(h :
a
=
b
)
:
(
a
∨
b
)
=
a
source
theorem
Mathlib
.
Tactic
.
CC
.
imp_eq_of_eq_true_left
{a b :
Prop
}
(h :
a
=
True
)
:
(
a
→
b
)
=
b
source
theorem
Mathlib
.
Tactic
.
CC
.
imp_eq_of_eq_true_right
{a b :
Prop
}
(h :
b
=
True
)
:
(
a
→
b
)
=
True
source
theorem
Mathlib
.
Tactic
.
CC
.
imp_eq_of_eq_false_left
{a b :
Prop
}
(h :
a
=
False
)
:
(
a
→
b
)
=
True
source
theorem
Mathlib
.
Tactic
.
CC
.
imp_eq_of_eq_false_right
{a b :
Prop
}
(h :
b
=
False
)
:
(
a
→
b
)
=
¬
a
source
theorem
Mathlib
.
Tactic
.
CC
.
not_imp_eq_of_eq_false_right
{a b :
Prop
}
(h :
b
=
False
)
:
(
¬
a
→
b
)
=
a
source
theorem
Mathlib
.
Tactic
.
CC
.
imp_eq_true_of_eq
{a b :
Prop
}
(h :
a
=
b
)
:
(
a
→
b
)
=
True
source
theorem
Mathlib
.
Tactic
.
CC
.
not_eq_of_eq_true
{a :
Prop
}
(h :
a
=
True
)
:
(
¬
a
)
=
False
source
theorem
Mathlib
.
Tactic
.
CC
.
not_eq_of_eq_false
{a :
Prop
}
(h :
a
=
False
)
:
(
¬
a
)
=
True
source
theorem
Mathlib
.
Tactic
.
CC
.
false_of_a_eq_not_a
{a :
Prop
}
(h :
a
=
¬
a
)
:
False
source
theorem
Mathlib
.
Tactic
.
CC
.
if_eq_of_eq_true
{c :
Prop
}
[d :
Decidable
c
]
{α :
Sort
u}
(t e :
α
)
(h :
c
=
True
)
:
(if
c
then
t
else
e
)
=
t
source
theorem
Mathlib
.
Tactic
.
CC
.
if_eq_of_eq_false
{c :
Prop
}
[d :
Decidable
c
]
{α :
Sort
u}
(t e :
α
)
(h :
c
=
False
)
:
(if
c
then
t
else
e
)
=
e
source
theorem
Mathlib
.
Tactic
.
CC
.
if_eq_of_eq
(c :
Prop
)
[d :
Decidable
c
]
{α :
Sort
u}
{t e :
α
}
(h :
t
=
e
)
:
(if
c
then
t
else
e
)
=
t
source
theorem
Mathlib
.
Tactic
.
CC
.
eq_true_of_and_eq_true_left
{a b :
Prop
}
(h :
(
a
∧
b
)
=
True
)
:
a
=
True
source
theorem
Mathlib
.
Tactic
.
CC
.
eq_true_of_and_eq_true_right
{a b :
Prop
}
(h :
(
a
∧
b
)
=
True
)
:
b
=
True
source
theorem
Mathlib
.
Tactic
.
CC
.
eq_false_of_or_eq_false_left
{a b :
Prop
}
(h :
(
a
∨
b
)
=
False
)
:
a
=
False
source
theorem
Mathlib
.
Tactic
.
CC
.
eq_false_of_or_eq_false_right
{a b :
Prop
}
(h :
(
a
∨
b
)
=
False
)
:
b
=
False
source
theorem
Mathlib
.
Tactic
.
CC
.
eq_false_of_not_eq_true
{a :
Prop
}
(h :
(
¬
a
)
=
True
)
:
a
=
False
source
theorem
Mathlib
.
Tactic
.
CC
.
eq_true_of_not_eq_false
{a :
Prop
}
(h :
(
¬
a
)
=
False
)
:
a
=
True