Documentation

Mathlib.Tactic.CategoryTheory.Bicategory.Normalize

Normalization of 2-morphisms in bicategories #

This file provides the implementation of the normalization given in Mathlib.Tactic.CategoryTheory.Coherence.Normalize. See this file for more details.

theorem Mathlib.Tactic.Bicategory.evalComp_nil_nil {B : Type u} [CategoryTheory.Bicategory B] {a b : B} {f g h : a b} (α : f g) (β : g h) :
(α ≪≫ β).hom = (α ≪≫ β).hom
theorem Mathlib.Tactic.Bicategory.eval_comp {B : Type u} [CategoryTheory.Bicategory B] {a b : B} {f g h : a b} {η η' : f g} {θ θ' : g h} {ι : f h} (e_η : η = η') (e_θ : θ = θ') (e_ηθ : CategoryTheory.CategoryStruct.comp η' θ' = ι) :
theorem Mathlib.Tactic.Bicategory.eval_monoidalComp {B : Type u} [CategoryTheory.Bicategory B] {a b : B} {f g h i : a b} {η η' : f g} {α : g h} {θ θ' : h i} {αθ : g i} {ηαθ : f i} (e_η : η = η') (e_θ : θ = θ') (e_αθ : CategoryTheory.CategoryStruct.comp α.hom θ' = αθ) (e_ηαθ : CategoryTheory.CategoryStruct.comp η' αθ = ηαθ) :
theorem Mathlib.Tactic.Bicategory.evalWhiskerRight_cons_whisker {B : Type u} [CategoryTheory.Bicategory B] {a b c d : B} {f : a b} {g : a c} {h i : b c} {j : a c} {k : c d} {α : g CategoryTheory.CategoryStruct.comp f h} {η : h i} {ηs : CategoryTheory.CategoryStruct.comp f i j} {η₁ : CategoryTheory.CategoryStruct.comp h k CategoryTheory.CategoryStruct.comp i k} {η₂ : CategoryTheory.CategoryStruct.comp f (CategoryTheory.CategoryStruct.comp h k) CategoryTheory.CategoryStruct.comp f (CategoryTheory.CategoryStruct.comp i k)} {ηs₁ : CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp f i) k CategoryTheory.CategoryStruct.comp j k} {ηs₂ : CategoryTheory.CategoryStruct.comp f (CategoryTheory.CategoryStruct.comp i k) CategoryTheory.CategoryStruct.comp j k} {η₃ : CategoryTheory.CategoryStruct.comp f (CategoryTheory.CategoryStruct.comp h k) CategoryTheory.CategoryStruct.comp j k} {η₄ : CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp f h) k CategoryTheory.CategoryStruct.comp j k} {η₅ : CategoryTheory.CategoryStruct.comp g k CategoryTheory.CategoryStruct.comp j k} (e_η₁ : CategoryTheory.Bicategory.whiskerRight (CategoryTheory.CategoryStruct.comp (CategoryTheory.Iso.refl h).hom (CategoryTheory.CategoryStruct.comp η (CategoryTheory.Iso.refl i).hom)) k = η₁) (e_η₂ : CategoryTheory.Bicategory.whiskerLeft f η₁ = η₂) (e_ηs₁ : CategoryTheory.Bicategory.whiskerRight ηs k = ηs₁) (e_ηs₂ : CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator f i k).inv ηs₁ = ηs₂) (e_η₃ : CategoryTheory.CategoryStruct.comp η₂ ηs₂ = η₃) (e_η₄ : CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator f h k).hom η₃ = η₄) (e_η₅ : CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRightIso α k).hom η₄ = η₅) :
theorem Mathlib.Tactic.Bicategory.eval_bicategoricalComp {B : Type u} [CategoryTheory.Bicategory B] {a b : B} {f g h i : a b} {η η' : f g} {α : g h} {θ θ' : h i} {αθ : g i} {ηαθ : f i} (e_η : η = η') (e_θ : θ = θ') (e_αθ : CategoryTheory.CategoryStruct.comp α.hom θ' = αθ) (e_ηαθ : CategoryTheory.CategoryStruct.comp η' αθ = ηαθ) :