Coherence tactic #
This file provides a meta framework for the coherence tactic, which solves goals of the form
η = θ
, where η
and θ
are 2-morphism in a bicategory or morphisms in a monoidal category
made up only of associators, unitors, and identities.
The function defined here is a meta reimplementation of the formalized coherence theorems provided in the following files:
- Mathlib.CategoryTheory.Monoidal.Free.Coherence
- Mathlib.CategoryTheory.Bicategory.Coherence See these files for a mathematical explanation of the proof of the coherence theorem.
The actual tactics that users will use are given in
Mathlib.Tactic.CategoryTheory.Monoidal.PureCoherence
Mathlib.Tactic.CategoryTheory.Bicategory.PureCoherence
The result of normalizing a 1-morphism.
- normalizedHom : Mathlib.Tactic.BicategoryLike.NormalizedHom
The normalized 1-morphism.
- toNormalize : Mathlib.Tactic.BicategoryLike.Mor₂Iso
The 2-morphism from the original 1-morphism to the normalized 1-morphism.
Instances For
Equations
- Mathlib.Tactic.BicategoryLike.Normalize.instInhabitedResult = { default := { normalizedHom := default, toNormalize := default } }
Meta version of CategoryTheory.FreeBicategory.normalizeIso
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Lemmas to prove the meta version of CategoryTheory.FreeBicategory.normalize_naturality
.
- mkNaturalityAssociator (p pf pfg pfgh : Mathlib.Tactic.BicategoryLike.NormalizedHom) (f g h : Mathlib.Tactic.BicategoryLike.Mor₁) (η_f η_g η_h : Mathlib.Tactic.BicategoryLike.Mor₂Iso) : m Lean.Expr
The naturality for the associator.
- mkNaturalityLeftUnitor (p pf : Mathlib.Tactic.BicategoryLike.NormalizedHom) (f : Mathlib.Tactic.BicategoryLike.Mor₁) (η_f : Mathlib.Tactic.BicategoryLike.Mor₂Iso) : m Lean.Expr
The naturality for the left unitor.
- mkNaturalityRightUnitor (p pf : Mathlib.Tactic.BicategoryLike.NormalizedHom) (f : Mathlib.Tactic.BicategoryLike.Mor₁) (η_f : Mathlib.Tactic.BicategoryLike.Mor₂Iso) : m Lean.Expr
The naturality for the right unitor.
- mkNaturalityId (p pf : Mathlib.Tactic.BicategoryLike.NormalizedHom) (f : Mathlib.Tactic.BicategoryLike.Mor₁) (η_f : Mathlib.Tactic.BicategoryLike.Mor₂Iso) : m Lean.Expr
The naturality for the identity.
- mkNaturalityComp (p pf : Mathlib.Tactic.BicategoryLike.NormalizedHom) (f g h : Mathlib.Tactic.BicategoryLike.Mor₁) (η θ η_f η_g η_h : Mathlib.Tactic.BicategoryLike.Mor₂Iso) (ih_η ih_θ : Lean.Expr) : m Lean.Expr
The naturality for the composition.
- mkNaturalityWhiskerLeft (p pf pfg : Mathlib.Tactic.BicategoryLike.NormalizedHom) (f g h : Mathlib.Tactic.BicategoryLike.Mor₁) (η η_f η_fg η_fh : Mathlib.Tactic.BicategoryLike.Mor₂Iso) (ih_η : Lean.Expr) : m Lean.Expr
The naturality for the left whiskering.
- mkNaturalityWhiskerRight (p pf pfh : Mathlib.Tactic.BicategoryLike.NormalizedHom) (f g h : Mathlib.Tactic.BicategoryLike.Mor₁) (η η_f η_g η_fh : Mathlib.Tactic.BicategoryLike.Mor₂Iso) (ih_η : Lean.Expr) : m Lean.Expr
The naturality for the right whiskering.
- mkNaturalityHorizontalComp (p pf₁ pf₁f₂ : Mathlib.Tactic.BicategoryLike.NormalizedHom) (f₁ g₁ f₂ g₂ : Mathlib.Tactic.BicategoryLike.Mor₁) (η θ η_f₁ η_g₁ η_f₂ η_g₂ : Mathlib.Tactic.BicategoryLike.Mor₂Iso) (ih_η ih_θ : Lean.Expr) : m Lean.Expr
The naturality for the horizontal composition.
- mkNaturalityInv (p pf : Mathlib.Tactic.BicategoryLike.NormalizedHom) (f g : Mathlib.Tactic.BicategoryLike.Mor₁) (η η_f η_g : Mathlib.Tactic.BicategoryLike.Mor₂Iso) (ih_η : Lean.Expr) : m Lean.Expr
The naturality for the inverse.
Instances
Meta version of CategoryTheory.FreeBicategory.normalize_naturality
.
Prove the equality between structural isomorphisms using the naturality of normalize
.
- mkEqOfNaturality (η θ : Lean.Expr) (η' θ' : Mathlib.Tactic.BicategoryLike.IsoLift) (η_f η_g : Mathlib.Tactic.BicategoryLike.Mor₂Iso) (Hη Hθ : Lean.Expr) : m Lean.Expr
Auxiliary function for
pureCoherence
.
Instances
Close the goal of the form η = θ
, where η
and θ
are 2-isomorphisms made up only of
associators, unitors, and identities.
Equations
- One or more equations did not get rendered due to their size.