theorem
Mathlib.Meta.NormNum.isNat_eq_false
{α : Type u_1}
[AddMonoidWithOne α]
[CharZero α]
{a b : α}
{a' b' : ℕ}
:
Mathlib.Meta.NormNum.IsNat a a' → Mathlib.Meta.NormNum.IsNat b b' → a'.beq b' = false → ¬a = b
theorem
Mathlib.Meta.NormNum.isInt_eq_false
{α : Type u_1}
[Ring α]
[CharZero α]
{a b : α}
{a' b' : ℤ}
:
Mathlib.Meta.NormNum.IsInt a a' → Mathlib.Meta.NormNum.IsInt b b' → decide (a' = b') = false → ¬a = b
def
Mathlib.Meta.NormNum.evalEq.intArm
{v : Lean.Level}
{β : Q(Type v)}
(e : Q(«$β»))
(u : Lean.Level)
(α :
let u := u;
Q(Type u))
(a b : Q(«$α»))
(ra : Mathlib.Meta.NormNum.Result a)
(rb : Mathlib.Meta.NormNum.Result b)
(rα : Q(Ring «$α»))
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
Mathlib.Meta.NormNum.evalEq.ratArm
{v : Lean.Level}
{β : Q(Type v)}
(e : Q(«$β»))
(u : Lean.Level)
(α :
let u := u;
Q(Type u))
(a b : Q(«$α»))
(ra : Mathlib.Meta.NormNum.Result a)
(rb : Mathlib.Meta.NormNum.Result b)
(dα : Q(DivisionRing «$α»))
:
Equations
- One or more equations did not get rendered due to their size.