Alexandrov-discrete topological spaces #
This file defines Alexandrov-discrete spaces, aka finitely generated spaces.
A space is Alexandrov-discrete if the (arbitrary) intersection of open sets is open. As such, the intersection of all neighborhoods of a set is a neighborhood itself. Hence every set has a minimal neighborhood, which we call the neighborhoods kernel of the set.
Main declarations #
AlexandrovDiscrete: Prop-valued typeclass for a topological space to be Alexandrov-discrete
Tags #
Alexandroff, discrete, finitely generated, fg space
A topological space is Alexandrov-discrete or finitely generated if the intersection of a family of open sets is open.
The intersection of a family of open sets is an open set. Use
isOpen_sInterin the root namespace instead.
Instances
instance
DiscreteTopology.toAlexandrovDiscrete
{α : Type u_3}
[TopologicalSpace α]
[DiscreteTopology α]
:
theorem
isOpen_sInter
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{S : Set (Set α)}
:
theorem
isOpen_iInter
{ι : Sort u_1}
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{f : ι → Set α}
(hf : ∀ (i : ι), IsOpen (f i))
:
IsOpen (⋂ (i : ι), f i)
theorem
isOpen_iInter₂
{ι : Sort u_1}
{κ : ι → Sort u_2}
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{f : (i : ι) → κ i → Set α}
(hf : ∀ (i : ι) (j : κ i), IsOpen (f i j))
:
IsOpen (⋂ (i : ι), ⋂ (j : κ i), f i j)
theorem
isClosed_sUnion
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{S : Set (Set α)}
(hS : ∀ s ∈ S, IsClosed s)
:
theorem
isClosed_iUnion
{ι : Sort u_1}
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{f : ι → Set α}
(hf : ∀ (i : ι), IsClosed (f i))
:
IsClosed (⋃ (i : ι), f i)
theorem
isClosed_iUnion₂
{ι : Sort u_1}
{κ : ι → Sort u_2}
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{f : (i : ι) → κ i → Set α}
(hf : ∀ (i : ι) (j : κ i), IsClosed (f i j))
:
IsClosed (⋃ (i : ι), ⋃ (j : κ i), f i j)
theorem
isClopen_sInter
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{S : Set (Set α)}
(hS : ∀ s ∈ S, IsClopen s)
:
theorem
isClopen_iInter
{ι : Sort u_1}
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{f : ι → Set α}
(hf : ∀ (i : ι), IsClopen (f i))
:
IsClopen (⋂ (i : ι), f i)
theorem
isClopen_iInter₂
{ι : Sort u_1}
{κ : ι → Sort u_2}
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{f : (i : ι) → κ i → Set α}
(hf : ∀ (i : ι) (j : κ i), IsClopen (f i j))
:
IsClopen (⋂ (i : ι), ⋂ (j : κ i), f i j)
theorem
isClopen_sUnion
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{S : Set (Set α)}
(hS : ∀ s ∈ S, IsClopen s)
:
theorem
isClopen_iUnion
{ι : Sort u_1}
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{f : ι → Set α}
(hf : ∀ (i : ι), IsClopen (f i))
:
IsClopen (⋃ (i : ι), f i)
theorem
isClopen_iUnion₂
{ι : Sort u_1}
{κ : ι → Sort u_2}
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{f : (i : ι) → κ i → Set α}
(hf : ∀ (i : ι) (j : κ i), IsClopen (f i j))
:
IsClopen (⋃ (i : ι), ⋃ (j : κ i), f i j)
theorem
interior_iInter
{ι : Sort u_1}
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
(f : ι → Set α)
:
theorem
interior_sInter
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
(S : Set (Set α))
:
theorem
closure_iUnion
{ι : Sort u_1}
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
(f : ι → Set α)
:
theorem
closure_sUnion
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
(S : Set (Set α))
:
theorem
Topology.IsInducing.alexandrovDiscrete
{α : Type u_3}
{β : Type u_4}
[TopologicalSpace α]
[TopologicalSpace β]
[AlexandrovDiscrete α]
{f : β → α}
(h : IsInducing f)
:
theorem
alexandrovDiscrete_iSup
{ι : Sort u_1}
{α : Type u_3}
{t : ι → TopologicalSpace α}
:
(∀ (i : ι), AlexandrovDiscrete α) → AlexandrovDiscrete α
@[simp]
theorem
nhdsKer_mem_nhdsSet
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{s : Set α}
:
@[simp]
theorem
nhdsKer_eq_iff_isOpen
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{s : Set α}
:
@[simp]
theorem
nhdsKer_subset_iff_isOpen
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{s : Set α}
:
theorem
nhdsKer_subset_iff
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{s t : Set α}
:
theorem
nhdsKer_subset_iff_mem_nhdsSet
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{s t : Set α}
:
theorem
nhdsKer_singleton_subset_iff_mem_nhds
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{t : Set α}
{a : α}
:
@[simp]
theorem
principal_nhdsKer_singleton
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
(a : α)
:
theorem
nhdsSet_basis_nhdsKer
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
(s : Set α)
:
theorem
nhds_basis_nhdsKer_singleton
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
(a : α)
:
theorem
isOpen_iff_forall_specializes
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{s : Set α}
:
theorem
alexandrovDiscrete_coinduced
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{β : Type u_5}
{f : α → β}
:
instance
AlexandrovDiscrete.toFirstCountable
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
:
instance
AlexandrovDiscrete.toLocallyCompactSpace
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
:
instance
Subtype.instAlexandrovDiscrete
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{p : α → Prop}
:
AlexandrovDiscrete { a : α // p a }
instance
Quotient.instAlexandrovDiscrete
{α : Type u_3}
[TopologicalSpace α]
[AlexandrovDiscrete α]
{s : Setoid α}
:
instance
Sum.instAlexandrovDiscrete
{α : Type u_3}
{β : Type u_4}
[TopologicalSpace α]
[TopologicalSpace β]
[AlexandrovDiscrete α]
[AlexandrovDiscrete β]
:
AlexandrovDiscrete (α ⊕ β)
instance
Sigma.instAlexandrovDiscrete
{ι : Type u_5}
{X : ι → Type u_6}
[(i : ι) → TopologicalSpace (X i)]
[∀ (i : ι), AlexandrovDiscrete (X i)]
:
AlexandrovDiscrete ((i : ι) × X i)
instance
Prod.instAlexandrovDiscrete
{α : Type u_3}
{β : Type u_4}
[TopologicalSpace α]
[TopologicalSpace β]
[AlexandrovDiscrete α]
[AlexandrovDiscrete β]
:
AlexandrovDiscrete (α × β)
instance
Pi.instAlexandrovDiscreteOfFinite
{ι : Type u_5}
[Finite ι]
{X : ι → Type u_6}
[(i : ι) → TopologicalSpace (X i)]
[∀ (i : ι), AlexandrovDiscrete (X i)]
:
AlexandrovDiscrete ((i : ι) → X i)