Topology of affine subspaces. #
This file defines the embedding map from an affine subspace to the ambient space as a continuous affine map.
Main definitions #
def
AffineSubspace.subtypeA
{R : Type u_1}
{V : Type u_2}
{P : Type u_3}
[Ring R]
[AddCommGroup V]
[Module R V]
[TopologicalSpace P]
[AddTorsor V P]
(s : AffineSubspace R P)
[Nonempty ↥s]
:
Embedding of an affine subspace to the ambient space, as a continuous affine map.
Instances For
@[simp]
theorem
AffineSubspace.coe_subtypeA
{R : Type u_1}
{V : Type u_2}
{P : Type u_3}
[Ring R]
[AddCommGroup V]
[Module R V]
[TopologicalSpace P]
[AddTorsor V P]
(s : AffineSubspace R P)
[Nonempty ↥s]
:
@[simp]
theorem
AffineSubspace.subtypeA_toAffineMap
{R : Type u_1}
{V : Type u_2}
{P : Type u_3}
[Ring R]
[AddCommGroup V]
[Module R V]
[TopologicalSpace P]
[AddTorsor V P]
(s : AffineSubspace R P)
[Nonempty ↥s]
:
instance
AffineSubspace.instIsTopologicalAddTorsorSubtypeMemSubmoduleDirection
{R : Type u_1}
{V : Type u_2}
{P : Type u_3}
[Ring R]
[AddCommGroup V]
[Module R V]
[TopologicalSpace P]
[AddTorsor V P]
[TopologicalSpace V]
[IsTopologicalAddTorsor P]
{s : AffineSubspace R P}
[Nonempty ↥s]
:
theorem
AffineSubspace.isClosed_direction_iff
{R : Type u_1}
{V : Type u_2}
{P : Type u_3}
[Ring R]
[AddCommGroup V]
[Module R V]
[TopologicalSpace P]
[AddTorsor V P]
[TopologicalSpace V]
[IsTopologicalAddTorsor P]
[T1Space V]
(s : AffineSubspace R P)
: