Infinite sums and products in topological fields #
Lemmas on topological sums in rings with a strictly multiplicative norm, of which normed fields are the most familiar examples.
theorem
HasProd.norm
{α : Type u_1}
{E : Type u_2}
[SeminormedCommRing E]
[NormMulClass E]
[NormOneClass E]
{f : α → E}
{x : E}
(hfx : HasProd f x)
:
theorem
Multipliable.norm
{α : Type u_1}
{E : Type u_2}
[SeminormedCommRing E]
[NormMulClass E]
[NormOneClass E]
{f : α → E}
(hf : Multipliable f)
:
Multipliable fun (x : α) => ‖f x‖
theorem
Multipliable.norm_tprod
{α : Type u_1}
{E : Type u_2}
[SeminormedCommRing E]
[NormMulClass E]
[NormOneClass E]
{f : α → E}
(hf : Multipliable f)
:
@[deprecated Multipliable.norm_tprod (since := "2025-04-12")]
theorem
norm_tprod
{α : Type u_1}
{E : Type u_2}
[SeminormedCommRing E]
[NormMulClass E]
[NormOneClass E]
{f : α → E}
(hf : Multipliable f)
:
Alias of Multipliable.norm_tprod
.