Completion of continuous (semi-)linear maps: #
This file has a declaration that enables a continuous (semi-)linear map between modules to be lifted to a continuous semilinear map between the completions of those modules.
Main declarations: #
ContinuousLinearMap.completion: promotes a continuous semilinear map fromGtoHto a continuous semilinear map fromCompletion GtoCompletion H.
noncomputable def
ContinuousLinearMap.completion
{α : Type u_1}
{β : Type u_2}
{R₁ : Type u_3}
{R₂ : Type u_4}
[UniformSpace α]
[AddCommGroup α]
[IsUniformAddGroup α]
[Semiring R₁]
[Module R₁ α]
[UniformContinuousConstSMul R₁ α]
[Semiring R₂]
[UniformSpace β]
[AddCommGroup β]
[IsUniformAddGroup β]
[Module R₂ β]
[UniformContinuousConstSMul R₂ β]
{σ : R₁ →+* R₂}
(f : α →SL[σ] β)
:
Lift a continuous semilinear map to a continuous semilinear map between the
UniformSpace.Completions of the spaces. This is UniformSpace.Completion.map bundled as a
continuous linear map when the input is itself a continuous linear map.
Equations
- f.completion = { toFun := (↑((↑f).toAddMonoidHom.completion ⋯)).toFun, map_add' := ⋯, map_smul' := ⋯, cont := ⋯ }
Instances For
@[simp]
theorem
ContinuousLinearMap.toAddMonoidHom_completion
{α : Type u_1}
{β : Type u_2}
{R₁ : Type u_3}
{R₂ : Type u_4}
[UniformSpace α]
[AddCommGroup α]
[IsUniformAddGroup α]
[Semiring R₁]
[Module R₁ α]
[UniformContinuousConstSMul R₁ α]
[Semiring R₂]
[UniformSpace β]
[AddCommGroup β]
[IsUniformAddGroup β]
[Module R₂ β]
[UniformContinuousConstSMul R₂ β]
{σ : R₁ →+* R₂}
(f : α →SL[σ] β)
:
theorem
ContinuousLinearMap.coe_completion
{α : Type u_1}
{β : Type u_2}
{R₁ : Type u_3}
{R₂ : Type u_4}
[UniformSpace α]
[AddCommGroup α]
[IsUniformAddGroup α]
[Semiring R₁]
[Module R₁ α]
[UniformContinuousConstSMul R₁ α]
[Semiring R₂]
[UniformSpace β]
[AddCommGroup β]
[IsUniformAddGroup β]
[Module R₂ β]
[UniformContinuousConstSMul R₂ β]
{σ : R₁ →+* R₂}
(f : α →SL[σ] β)
:
@[simp]
theorem
ContinuousLinearMap.completion_apply_coe
{α : Type u_1}
{β : Type u_2}
{R₁ : Type u_3}
{R₂ : Type u_4}
[UniformSpace α]
[AddCommGroup α]
[IsUniformAddGroup α]
[Semiring R₁]
[Module R₁ α]
[UniformContinuousConstSMul R₁ α]
[Semiring R₂]
[UniformSpace β]
[AddCommGroup β]
[IsUniformAddGroup β]
[Module R₂ β]
[UniformContinuousConstSMul R₂ β]
{σ : R₁ →+* R₂}
(f : α →SL[σ] β)
(a : α)
: