The determinant of a continuous linear map. #
@[reducible, inline]
noncomputable abbrev
ContinuousLinearMap.det
{R : Type u_1}
[CommRing R]
{M : Type u_2}
[TopologicalSpace M]
[AddCommGroup M]
[Module R M]
(A : M →L[R] M)
:
R
The determinant of a continuous linear map, mainly as a convenience device to be able to
write A.det
instead of (A : M →ₗ[R] M).det
.
Equations
- A.det = LinearMap.det ↑A
Instances For
theorem
ContinuousLinearMap.det_pi
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
[Fintype ι]
[CommRing R]
[AddCommGroup M]
[TopologicalSpace M]
[Module R M]
[Module.Free R M]
[Module.Finite R M]
(f : ι → M →L[R] M)
:
@[simp]
theorem
ContinuousLinearEquiv.det_coe_symm
{R : Type u_1}
[Field R]
{M : Type u_2}
[TopologicalSpace M]
[AddCommGroup M]
[Module R M]
(A : M ≃L[R] M)
: