Finiteness conditions in commutative algebra #
In this file we define a notion of finiteness that is common in commutative algebra.
Main declarations #
Submodule.FG
,Ideal.FG
These express that some object is finitely generated as submodule over some base ring.Module.Finite
,RingHom.Finite
,AlgHom.Finite
all of these express that some object is finitely generated as module over some base ring.
def
Submodule.FG
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(N : Submodule R M)
:
A submodule of M
is finitely generated if it is the span of a finite subset of M
.
Equations
- N.FG = ∃ (S : Finset M), Submodule.span R ↑S = N
Instances For
A module over a semiring is Module.Finite
if it is finitely generated as a module.
A module over a semiring is
Module.Finite
if it is finitely generated as a module.
Instances
theorem
Module.finite_def
{R : Type u_6}
{M : Type u_7}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
theorem
Module.Finite.exists_fin
{R : Type u_1}
{M : Type u_4}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[Module.Finite R M]
:
See also Module.Finite.exists_fin'
.
A ring morphism A →+* B
is RingHom.Finite
if B
is finitely generated as A
-module.
Equations
- f.Finite = Module.Finite A B