Ideals generated by a set of elements #
This file defines Ideal.span s
as the ideal generated by the subset s
of the ring.
TODO #
Support right ideals, and two-sided ideals over non-commutative rings.
A ring is a principal ideal ring if all (left) ideals are principal.
- principal (S : Ideal R) : Submodule.IsPrincipal S
Instances
theorem
isPrincipalIdealRing_iff
(R : Type u)
[Semiring R]
:
IsPrincipalIdealRing R ↔ ∀ (S : Ideal R), Submodule.IsPrincipal S
@[simp]
The ideal generated by an arbitrary binary relation.
Equations
- Ideal.ofRel r = Submodule.span α {x : α | ∃ (a : α) (b : α), r a b ∧ x + b = a}
Instances For
theorem
Ideal.span_singleton_eq_span_singleton
{α : Type u}
[CommRing α]
[IsDomain α]
{x y : α}
:
span {x} = span {y} ↔ Associated x y
theorem
Ideal.span_singleton_mul_right_unit
{α : Type u}
[CommSemiring α]
{a : α}
(h2 : IsUnit a)
(x : α)
:
@[simp]
theorem
IsIdempotentElem.ker_toSpanSingleton_eq_span
{R : Type u_1}
[CommRing R]
{e : R}
(he : IsIdempotentElem e)
:
LinearMap.ker (LinearMap.toSpanSingleton R R e) = Ideal.span {1 - e}
theorem
IsIdempotentElem.ker_toSpanSingleton_one_sub_eq_span
{R : Type u_1}
[CommRing R]
{e : R}
(he : IsIdempotentElem e)
:
LinearMap.ker (LinearMap.toSpanSingleton R R (1 - e)) = Ideal.span {e}