Documentation

Mathlib.RingTheory.Ideal.Lattice

The lattice of ideals in a ring #

Some basic results on lattice operations on ideals: , , , .

TODO #

Support right ideals, and two-sided ideals over non-commutative rings.

theorem Ideal.instIsTwoSidedIInf {α : Type u} [Semiring α] {ι : Sort u_1} (I : ιIdeal α) [∀ (i : ι), (I i).IsTwoSided] :
(iInf fun (i : ι) => I i).IsTwoSided
theorem Ideal.eq_top_of_unit_mem {α : Type u} [Semiring α] (I : Ideal α) (x y : α) (hx : Membership.mem I x) (h : Eq (HMul.hMul y x) 1) :
theorem Ideal.eq_top_of_isUnit_mem {α : Type u} [Semiring α] (I : Ideal α) {x : α} (hx : Membership.mem I x) (h : IsUnit x) :
theorem Ideal.eq_top_iff_one {α : Type u} [Semiring α] (I : Ideal α) :
theorem Ideal.ne_top_iff_one {α : Type u} [Semiring α] (I : Ideal α) :
theorem Ideal.mem_sup_left {R : Type u} [Semiring R] {S T : Ideal R} {x : R} :
theorem Ideal.mem_sup_right {R : Type u} [Semiring R] {S T : Ideal R} {x : R} :
theorem Ideal.mem_iSup_of_mem {R : Type u} [Semiring R] {ι : Sort u_1} {S : ιIdeal R} (i : ι) {x : R} :
theorem Ideal.mem_sSup_of_mem {R : Type u} [Semiring R] {S : Set (Ideal R)} {s : Ideal R} (hs : Membership.mem S s) {x : R} :
theorem Ideal.mem_sInf {R : Type u} [Semiring R] {s : Set (Ideal R)} {x : R} :
Iff (Membership.mem (InfSet.sInf s) x) (∀ ⦃I : Ideal R⦄, Membership.mem s IMembership.mem I x)
theorem Ideal.mem_inf {R : Type u} [Semiring R] {I J : Ideal R} {x : R} :
theorem Ideal.mem_iInf {R : Type u} [Semiring R] {ι : Sort u_1} {I : ιIdeal R} {x : R} :
Iff (Membership.mem (iInf I) x) (∀ (i : ι), Membership.mem (I i) x)
theorem Ideal.mem_bot {R : Type u} [Semiring R] {x : R} :
theorem Ideal.eq_bot_or_top {K : Type u} [DivisionSemiring K] (I : Ideal K) :

All ideals in a division (semi)ring are trivial.