Documentation

Mathlib.RingTheory.Ideal.Defs

Ideals over a ring #

This file defines Ideal R, the type of (left) ideals over a ring R. Note that over commutative rings, left ideals and two-sided ideals are equivalent.

Implementation notes #

Ideal R is implemented using Submodule R R, where is interpreted as *.

TODO #

Support right ideals, and two-sided ideals over non-commutative rings.

@[reducible, inline]
abbrev Ideal (R : Type u) [Semiring R] :

A (left) ideal in a semiring R is an additive submonoid s such that a * b ∈ s whenever b ∈ s. If R is a ring, then s is an additive subgroup.

Equations
Instances For
    theorem Ideal.zero_mem {α : Type u} [Semiring α] (I : Ideal α) :
    0 I
    theorem Ideal.add_mem {α : Type u} [Semiring α] (I : Ideal α) {a b : α} :
    a Ib Ia + b I
    theorem Ideal.mul_mem_left {α : Type u} [Semiring α] (I : Ideal α) (a : α) {b : α} :
    b Ia * b I
    theorem Ideal.ext {α : Type u} [Semiring α] {I J : Ideal α} (h : ∀ (x : α), x I x J) :
    I = J
    @[simp]
    theorem Ideal.unit_mul_mem_iff_mem {α : Type u} [Semiring α] (I : Ideal α) {x y : α} (hy : IsUnit y) :
    y * x I x I
    def Module.eqIdeal (R : Type u_1) {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] (m m' : M) :

    For two elements m and m' in an R-module M, the set of elements r : R with equal scalar product with m and m' is an ideal of R. If M is a group, this coincides with the kernel of LinearMap.toSpanSingleton R M (m - m').

    Equations
    • Module.eqIdeal R m m' = { carrier := {r : R | r m = r m'}, add_mem' := , zero_mem' := , smul_mem' := }
    Instances For
      @[simp]
      theorem Ideal.mul_unit_mem_iff_mem {α : Type u} [CommSemiring α] (I : Ideal α) {x y : α} (hy : IsUnit y) :
      x * y I x I
      theorem Ideal.mul_mem_right {α : Type u} {a : α} (b : α) [CommSemiring α] (I : Ideal α) (h : a I) :
      a * b I
      theorem Ideal.mem_of_dvd {α : Type u} {a b : α} [CommSemiring α] (I : Ideal α) (hab : a b) (ha : a I) :
      b I
      theorem Ideal.pow_mem_of_mem {α : Type u} {a : α} [CommSemiring α] (I : Ideal α) (ha : a I) (n : ) (hn : 0 < n) :
      a ^ n I
      theorem Ideal.pow_mem_of_pow_mem {α : Type u} {a : α} [CommSemiring α] (I : Ideal α) {m n : } (ha : a ^ m I) (h : m n) :
      a ^ n I
      theorem Ideal.neg_mem_iff {α : Type u} [Ring α] (I : Ideal α) {a : α} :
      -a I a I
      theorem Ideal.add_mem_iff_left {α : Type u} [Ring α] (I : Ideal α) {a b : α} :
      b I(a + b I a I)
      theorem Ideal.add_mem_iff_right {α : Type u} [Ring α] (I : Ideal α) {a b : α} :
      a I(a + b I b I)
      theorem Ideal.sub_mem {α : Type u} [Ring α] (I : Ideal α) {a b : α} :
      a Ib Ia - b I
      theorem Ideal.mul_sub_mul_mem {R : Type u_1} [CommRing R] (I : Ideal R) {a b c d : R} (h1 : a - b I) (h2 : c - d I) :
      a * c - b * d I