Documentation

Mathlib.GroupTheory.Finiteness

Finitely generated monoids and groups #

We define finitely generated monoids and groups. See also Submodule.FG and Module.Finite for finitely-generated modules.

Main definition #

Monoids and submonoids #

def Submonoid.FG {M : Type u_1} [Monoid M] (P : Submonoid M) :

A submonoid of M is finitely generated if it is the closure of a finite subset of M.

Equations
Instances For
    def AddSubmonoid.FG {M : Type u_1} [AddMonoid M] (P : AddSubmonoid M) :

    An additive submonoid of N is finitely generated if it is the closure of a finite subset of M.

    Equations
    Instances For
      theorem Submonoid.fg_iff {M : Type u_1} [Monoid M] (P : Submonoid M) :
      P.FG ∃ (S : Set M), Submonoid.closure S = P S.Finite

      An equivalent expression of Submonoid.FG in terms of Set.Finite instead of Finset.

      theorem AddSubmonoid.fg_iff {M : Type u_1} [AddMonoid M] (P : AddSubmonoid M) :
      P.FG ∃ (S : Set M), AddSubmonoid.closure S = P S.Finite

      An equivalent expression of AddSubmonoid.FG in terms of Set.Finite instead of Finset.

      theorem Submonoid.fg_iff_add_fg {M : Type u_1} [Monoid M] (P : Submonoid M) :
      P.FG (Submonoid.toAddSubmonoid P).FG
      theorem AddSubmonoid.fg_iff_mul_fg {N : Type u_2} [AddMonoid N] (P : AddSubmonoid N) :
      P.FG (AddSubmonoid.toSubmonoid P).FG
      class Monoid.FG (M : Type u_1) [Monoid M] :

      A monoid is finitely generated if it is finitely generated as a submonoid of itself.

      Instances
        class AddMonoid.FG (N : Type u_2) [AddMonoid N] :

        An additive monoid is finitely generated if it is finitely generated as an additive submonoid of itself.

        Instances
          theorem Monoid.fg_def {M : Type u_1} [Monoid M] :
          theorem Monoid.fg_iff {M : Type u_1} [Monoid M] :
          Monoid.FG M ∃ (S : Set M), Submonoid.closure S = S.Finite

          An equivalent expression of Monoid.FG in terms of Set.Finite instead of Finset.

          theorem AddMonoid.fg_iff {M : Type u_1} [AddMonoid M] :
          AddMonoid.FG M ∃ (S : Set M), AddSubmonoid.closure S = S.Finite

          An equivalent expression of AddMonoid.FG in terms of Set.Finite instead of Finset.

          @[instance 100]
          instance Monoid.fg_of_finite {M : Type u_1} [Monoid M] [Finite M] :
          @[instance 100]
          theorem Submonoid.FG.map {M : Type u_1} [Monoid M] {M' : Type u_3} [Monoid M'] {P : Submonoid M} (h : P.FG) (e : M →* M') :
          (Submonoid.map e P).FG
          theorem AddSubmonoid.FG.map {M : Type u_1} [AddMonoid M] {M' : Type u_3} [AddMonoid M'] {P : AddSubmonoid M} (h : P.FG) (e : M →+ M') :
          theorem Submonoid.FG.map_injective {M : Type u_1} [Monoid M] {M' : Type u_3} [Monoid M'] {P : Submonoid M} (e : M →* M') (he : Function.Injective e) (h : (Submonoid.map e P).FG) :
          P.FG
          theorem AddSubmonoid.FG.map_injective {M : Type u_1} [AddMonoid M] {M' : Type u_3} [AddMonoid M'] {P : AddSubmonoid M} (e : M →+ M') (he : Function.Injective e) (h : (AddSubmonoid.map e P).FG) :
          P.FG
          @[simp]
          theorem Monoid.fg_iff_submonoid_fg {M : Type u_1} [Monoid M] (N : Submonoid M) :
          Monoid.FG N N.FG
          @[simp]
          theorem Monoid.fg_of_surjective {M : Type u_1} [Monoid M] {M' : Type u_3} [Monoid M'] [Monoid.FG M] (f : M →* M') (hf : Function.Surjective f) :
          theorem AddMonoid.fg_of_surjective {M : Type u_1} [AddMonoid M] {M' : Type u_3} [AddMonoid M'] [AddMonoid.FG M] (f : M →+ M') (hf : Function.Surjective f) :
          instance Monoid.fg_range {M : Type u_1} [Monoid M] {M' : Type u_3} [Monoid M'] [Monoid.FG M] (f : M →* M') :
          instance AddMonoid.fg_range {M : Type u_1} [AddMonoid M] {M' : Type u_3} [AddMonoid M'] [AddMonoid.FG M] (f : M →+ M') :
          theorem Submonoid.powers_fg {M : Type u_1} [Monoid M] (r : M) :
          instance Monoid.powers_fg {M : Type u_1} [Monoid M] (r : M) :
          instance Monoid.closure_finite_fg {M : Type u_1} [Monoid M] (s : Set M) [Finite s] :

          Groups and subgroups #

          def Subgroup.FG {G : Type u_3} [Group G] (P : Subgroup G) :

          A subgroup of G is finitely generated if it is the closure of a finite subset of G.

          Equations
          Instances For
            def AddSubgroup.FG {G : Type u_3} [AddGroup G] (P : AddSubgroup G) :

            An additive subgroup of H is finitely generated if it is the closure of a finite subset of H.

            Equations
            Instances For
              theorem Subgroup.fg_iff {G : Type u_3} [Group G] (P : Subgroup G) :
              P.FG ∃ (S : Set G), Subgroup.closure S = P S.Finite

              An equivalent expression of Subgroup.FG in terms of Set.Finite instead of Finset.

              theorem AddSubgroup.fg_iff {G : Type u_3} [AddGroup G] (P : AddSubgroup G) :
              P.FG ∃ (S : Set G), AddSubgroup.closure S = P S.Finite

              An equivalent expression of AddSubgroup.fg in terms of Set.Finite instead of Finset.

              theorem Subgroup.fg_iff_submonoid_fg {G : Type u_3} [Group G] (P : Subgroup G) :
              P.FG P.FG

              A subgroup is finitely generated if and only if it is finitely generated as a submonoid.

              theorem AddSubgroup.fg_iff_addSubmonoid_fg {G : Type u_3} [AddGroup G] (P : AddSubgroup G) :
              P.FG P.FG

              An additive subgroup is finitely generated if and only if it is finitely generated as an additive submonoid.

              theorem Subgroup.fg_iff_add_fg {G : Type u_3} [Group G] (P : Subgroup G) :
              P.FG (Subgroup.toAddSubgroup P).FG
              theorem AddSubgroup.fg_iff_mul_fg {H : Type u_4} [AddGroup H] (P : AddSubgroup H) :
              P.FG (AddSubgroup.toSubgroup P).FG
              class Group.FG (G : Type u_3) [Group G] :

              A group is finitely generated if it is finitely generated as a submonoid of itself.

              Instances
                class AddGroup.FG (H : Type u_4) [AddGroup H] :

                An additive group is finitely generated if it is finitely generated as an additive submonoid of itself.

                Instances
                  theorem Group.fg_def {G : Type u_3} [Group G] :
                  theorem Group.fg_iff {G : Type u_3} [Group G] :
                  Group.FG G ∃ (S : Set G), Subgroup.closure S = S.Finite

                  An equivalent expression of Group.FG in terms of Set.Finite instead of Finset.

                  theorem AddGroup.fg_iff {G : Type u_3} [AddGroup G] :
                  AddGroup.FG G ∃ (S : Set G), AddSubgroup.closure S = S.Finite

                  An equivalent expression of AddGroup.fg in terms of Set.Finite instead of Finset.

                  theorem Group.fg_iff' {G : Type u_3} [Group G] :
                  Group.FG G ∃ (n : ) (S : Finset G), S.card = n Subgroup.closure S =
                  theorem AddGroup.fg_iff' {G : Type u_3} [AddGroup G] :
                  AddGroup.FG G ∃ (n : ) (S : Finset G), S.card = n AddSubgroup.closure S =

                  A group is finitely generated if and only if it is finitely generated as a monoid.

                  An additive group is finitely generated if and only if it is finitely generated as an additive monoid.

                  @[simp]
                  theorem Group.fg_iff_subgroup_fg {G : Type u_3} [Group G] (H : Subgroup G) :
                  Group.FG H H.FG
                  @[simp]
                  theorem AddGroup.fg_iff_addSubgroup_fg {G : Type u_3} [AddGroup G] (H : AddSubgroup G) :
                  AddGroup.FG H H.FG
                  @[instance 100]
                  instance Group.fg_of_finite {G : Type u_3} [Group G] [Finite G] :
                  @[instance 100]
                  instance AddGroup.fg_of_finite {G : Type u_3} [AddGroup G] [Finite G] :
                  theorem Group.fg_of_surjective {G : Type u_3} [Group G] {G' : Type u_5} [Group G'] [hG : Group.FG G] {f : G →* G'} (hf : Function.Surjective f) :
                  theorem AddGroup.fg_of_surjective {G : Type u_3} [AddGroup G] {G' : Type u_5} [AddGroup G'] [hG : AddGroup.FG G] {f : G →+ G'} (hf : Function.Surjective f) :
                  instance Group.fg_range {G : Type u_3} [Group G] {G' : Type u_5} [Group G'] [Group.FG G] (f : G →* G') :
                  Group.FG f.range
                  instance AddGroup.fg_range {G : Type u_3} [AddGroup G] {G' : Type u_5} [AddGroup G'] [AddGroup.FG G] (f : G →+ G') :
                  AddGroup.FG f.range
                  instance Group.closure_finset_fg {G : Type u_3} [Group G] (s : Finset G) :
                  instance Group.closure_finite_fg {G : Type u_3} [Group G] (s : Set G) [Finite s] :
                  noncomputable def Group.rank (G : Type u_3) [Group G] [h : Group.FG G] :

                  The minimum number of generators of a group.

                  Equations
                  Instances For
                    noncomputable def AddGroup.rank (G : Type u_3) [AddGroup G] [h : AddGroup.FG G] :

                    The minimum number of generators of an additive group

                    Equations
                    Instances For
                      theorem Group.rank_spec (G : Type u_3) [Group G] [h : Group.FG G] :
                      ∃ (S : Finset G), S.card = Group.rank G Subgroup.closure S =
                      theorem AddGroup.rank_spec (G : Type u_3) [AddGroup G] [h : AddGroup.FG G] :
                      ∃ (S : Finset G), S.card = AddGroup.rank G AddSubgroup.closure S =
                      theorem Group.rank_le (G : Type u_3) [Group G] [h : Group.FG G] {S : Finset G} (hS : Subgroup.closure S = ) :
                      Group.rank G S.card
                      theorem AddGroup.rank_le (G : Type u_3) [AddGroup G] [h : AddGroup.FG G] {S : Finset G} (hS : AddSubgroup.closure S = ) :
                      theorem Group.rank_le_of_surjective {G : Type u_3} [Group G] {G' : Type u_5} [Group G'] [Group.FG G] [Group.FG G'] (f : G →* G') (hf : Function.Surjective f) :
                      theorem Group.rank_range_le {G : Type u_3} [Group G] {G' : Type u_5} [Group G'] [Group.FG G] {f : G →* G'} :
                      theorem AddGroup.rank_range_le {G : Type u_3} [AddGroup G] {G' : Type u_5} [AddGroup G'] [AddGroup.FG G] {f : G →+ G'} :
                      theorem Group.rank_congr {G : Type u_3} [Group G] {G' : Type u_5} [Group G'] [Group.FG G] [Group.FG G'] (f : G ≃* G') :
                      theorem AddGroup.rank_congr {G : Type u_3} [AddGroup G] {G' : Type u_5} [AddGroup G'] [AddGroup.FG G] [AddGroup.FG G'] (f : G ≃+ G') :
                      theorem Subgroup.rank_congr {G : Type u_3} [Group G] {H K : Subgroup G} [Group.FG H] [Group.FG K] (h : H = K) :
                      theorem AddSubgroup.rank_congr {G : Type u_3} [AddGroup G] {H K : AddSubgroup G} [AddGroup.FG H] [AddGroup.FG K] (h : H = K) :
                      instance QuotientGroup.fg {G : Type u_3} [Group G] [Group.FG G] (N : Subgroup G) [N.Normal] :
                      instance QuotientAddGroup.fg {G : Type u_3} [AddGroup G] [AddGroup.FG G] (N : AddSubgroup G) [N.Normal] :