Documentation

Mathlib.Algebra.Group.Subgroup.Lattice

Lattice structure of subgroups #

We prove subgroups of a group form a complete lattice.

There are also theorems about the subgroups generated by an element or a subset of a group, defined both inductively and as the infimum of the set of subgroups containing a given element/subset.

Special thanks goes to Amelia Livingston and Yury Kudryashov for their help and inspiration.

Main definitions #

Notation used here:

Definitions in the file:

Implementation notes #

Subgroup inclusion is denoted rather than , although is defined as membership of a subgroup's underlying set.

Tags #

subgroup, subgroups

Conversion to/from Additive/Multiplicative #

Subgroups of a group G are isomorphic to additive subgroups of Additive G.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem Subgroup.coe_toAddSubgroup_apply {G : Type u_1} [Group G] (S : Subgroup G) :
    (toAddSubgroup S) = Additive.toMul ⁻¹' S
    @[reducible, inline]

    Additive subgroup of an additive group Additive G are isomorphic to subgroup of G.

    Equations
    Instances For

      Additive subgroups of an additive group A are isomorphic to subgroups of Multiplicative A.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem AddSubgroup.coe_toSubgroup_apply {A : Type u_2} [AddGroup A] (S : AddSubgroup A) :
        (toSubgroup S) = Multiplicative.toAdd ⁻¹' S
        @[reducible, inline]

        Subgroups of an additive group Multiplicative A are isomorphic to additive subgroups of A.

        Equations
        Instances For
          instance Subgroup.instTop {G : Type u_1} [Group G] :

          The subgroup G of the group G.

          Equations
          instance AddSubgroup.instTop {G : Type u_1} [AddGroup G] :

          The AddSubgroup G of the AddGroup G.

          Equations
          def Subgroup.topEquiv {G : Type u_1} [Group G] :
          ≃* G

          The top subgroup is isomorphic to the group.

          This is the group version of Submonoid.topEquiv.

          Equations
          Instances For
            def AddSubgroup.topEquiv {G : Type u_1} [AddGroup G] :
            ≃+ G

            The top additive subgroup is isomorphic to the additive group.

            This is the additive group version of AddSubmonoid.topEquiv.

            Equations
            Instances For
              @[simp]
              theorem AddSubgroup.topEquiv_symm_apply_coe {G : Type u_1} [AddGroup G] (x : G) :
              (topEquiv.symm x) = x
              @[simp]
              theorem Subgroup.topEquiv_apply {G : Type u_1} [Group G] (x : ) :
              topEquiv x = x
              @[simp]
              theorem AddSubgroup.topEquiv_apply {G : Type u_1} [AddGroup G] (x : ) :
              topEquiv x = x
              @[simp]
              theorem Subgroup.topEquiv_symm_apply_coe {G : Type u_1} [Group G] (x : G) :
              (topEquiv.symm x) = x
              instance Subgroup.instBot {G : Type u_1} [Group G] :

              The trivial subgroup {1} of a group G.

              Equations
              instance AddSubgroup.instBot {G : Type u_1} [AddGroup G] :

              The trivial AddSubgroup {0} of an AddGroup G.

              Equations
              instance Subgroup.instInhabited {G : Type u_1} [Group G] :
              Equations
              @[simp]
              theorem Subgroup.mem_bot {G : Type u_1} [Group G] {x : G} :
              x x = 1
              @[simp]
              theorem AddSubgroup.mem_bot {G : Type u_1} [AddGroup G] {x : G} :
              x x = 0
              @[simp]
              theorem Subgroup.mem_top {G : Type u_1} [Group G] (x : G) :
              @[simp]
              theorem AddSubgroup.mem_top {G : Type u_1} [AddGroup G] (x : G) :
              @[simp]
              theorem Subgroup.coe_top {G : Type u_1} [Group G] :
              @[simp]
              theorem AddSubgroup.coe_top {G : Type u_1} [AddGroup G] :
              @[simp]
              theorem Subgroup.coe_bot {G : Type u_1} [Group G] :
              = {1}
              @[simp]
              theorem AddSubgroup.coe_bot {G : Type u_1} [AddGroup G] :
              = {0}
              Equations
              Equations
              @[simp]
              theorem Subgroup.top_toSubmonoid {G : Type u_1} [Group G] :
              .toSubmonoid =
              @[simp]
              theorem AddSubgroup.top_toAddSubmonoid {G : Type u_1} [AddGroup G] :
              .toAddSubmonoid =
              @[simp]
              theorem Subgroup.bot_toSubmonoid {G : Type u_1} [Group G] :
              .toSubmonoid =
              @[simp]
              theorem AddSubgroup.bot_toAddSubmonoid {G : Type u_1} [AddGroup G] :
              .toAddSubmonoid =
              theorem Subgroup.eq_bot_iff_forall {G : Type u_1} [Group G] (H : Subgroup G) :
              H = xH, x = 1
              theorem AddSubgroup.eq_bot_iff_forall {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
              H = xH, x = 0
              @[simp]
              theorem Subgroup.coe_eq_univ {G : Type u_1} [Group G] {H : Subgroup G} :
              H = Set.univ H =
              @[simp]
              theorem AddSubgroup.coe_eq_univ {G : Type u_1} [AddGroup G] {H : AddSubgroup G} :
              H = Set.univ H =
              theorem Subgroup.coe_eq_singleton {G : Type u_1} [Group G] {H : Subgroup G} :
              (∃ (g : G), H = {g}) H =
              theorem AddSubgroup.coe_eq_singleton {G : Type u_1} [AddGroup G] {H : AddSubgroup G} :
              (∃ (g : G), H = {g}) H =
              theorem Subgroup.nontrivial_iff_exists_ne_one {G : Type u_1} [Group G] (H : Subgroup G) :
              Nontrivial H xH, x 1
              theorem AddSubgroup.nontrivial_iff_exists_ne_zero {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
              Nontrivial H xH, x 0
              theorem Subgroup.exists_ne_one_of_nontrivial {G : Type u_1} [Group G] (H : Subgroup G) [Nontrivial H] :
              xH, x 1
              theorem AddSubgroup.exists_ne_zero_of_nontrivial {G : Type u_1} [AddGroup G] (H : AddSubgroup G) [Nontrivial H] :
              xH, x 0
              theorem Subgroup.bot_or_nontrivial {G : Type u_1} [Group G] (H : Subgroup G) :

              A subgroup is either the trivial subgroup or nontrivial.

              A subgroup is either the trivial subgroup or nontrivial.

              theorem Subgroup.bot_or_exists_ne_one {G : Type u_1} [Group G] (H : Subgroup G) :
              H = xH, x 1

              A subgroup is either the trivial subgroup or contains a non-identity element.

              theorem AddSubgroup.bot_or_exists_ne_zero {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
              H = xH, x 0

              A subgroup is either the trivial subgroup or contains a nonzero element.

              theorem Subgroup.ne_bot_iff_exists_ne_one {G : Type u_1} [Group G] {H : Subgroup G} :
              H ∃ (a : H), a 1
              theorem AddSubgroup.ne_bot_iff_exists_ne_zero {G : Type u_1} [AddGroup G] {H : AddSubgroup G} :
              H ∃ (a : H), a 0
              instance Subgroup.instMin {G : Type u_1} [Group G] :

              The inf of two subgroups is their intersection.

              Equations
              • Subgroup.instMin = { min := fun (H₁ H₂ : Subgroup G) => let __src := H₁.toSubmonoid H₂.toSubmonoid; { toSubmonoid := __src, inv_mem' := } }
              instance AddSubgroup.instMin {G : Type u_1} [AddGroup G] :

              The inf of two AddSubgroups is their intersection.

              Equations
              • AddSubgroup.instMin = { min := fun (H₁ H₂ : AddSubgroup G) => let __src := H₁.toAddSubmonoid H₂.toAddSubmonoid; { toAddSubmonoid := __src, neg_mem' := } }
              @[simp]
              theorem Subgroup.coe_inf {G : Type u_1} [Group G] (p p' : Subgroup G) :
              (p p') = p p'
              @[simp]
              theorem AddSubgroup.coe_inf {G : Type u_1} [AddGroup G] (p p' : AddSubgroup G) :
              (p p') = p p'
              @[simp]
              theorem Subgroup.mem_inf {G : Type u_1} [Group G] {p p' : Subgroup G} {x : G} :
              x p p' x p x p'
              @[simp]
              theorem AddSubgroup.mem_inf {G : Type u_1} [AddGroup G] {p p' : AddSubgroup G} {x : G} :
              x p p' x p x p'
              instance Subgroup.instInfSet {G : Type u_1} [Group G] :
              Equations
              • Subgroup.instInfSet = { sInf := fun (s : Set (Subgroup G)) => let __src := (⨅ Ss, S.toSubmonoid).copy (⋂ Ss, S) ; { toSubmonoid := __src, inv_mem' := } }
              Equations
              • AddSubgroup.instInfSet = { sInf := fun (s : Set (AddSubgroup G)) => let __src := (⨅ Ss, S.toAddSubmonoid).copy (⋂ Ss, S) ; { toAddSubmonoid := __src, neg_mem' := } }
              @[simp]
              theorem Subgroup.coe_sInf {G : Type u_1} [Group G] (H : Set (Subgroup G)) :
              (sInf H) = sH, s
              @[simp]
              theorem AddSubgroup.coe_sInf {G : Type u_1} [AddGroup G] (H : Set (AddSubgroup G)) :
              (sInf H) = sH, s
              @[simp]
              theorem Subgroup.mem_sInf {G : Type u_1} [Group G] {S : Set (Subgroup G)} {x : G} :
              x sInf S pS, x p
              @[simp]
              theorem AddSubgroup.mem_sInf {G : Type u_1} [AddGroup G] {S : Set (AddSubgroup G)} {x : G} :
              x sInf S pS, x p
              theorem Subgroup.mem_iInf {G : Type u_1} [Group G] {ι : Sort u_2} {S : ιSubgroup G} {x : G} :
              x ⨅ (i : ι), S i ∀ (i : ι), x S i
              theorem AddSubgroup.mem_iInf {G : Type u_1} [AddGroup G] {ι : Sort u_2} {S : ιAddSubgroup G} {x : G} :
              x ⨅ (i : ι), S i ∀ (i : ι), x S i
              @[simp]
              theorem Subgroup.coe_iInf {G : Type u_1} [Group G] {ι : Sort u_2} {S : ιSubgroup G} :
              (⨅ (i : ι), S i) = ⋂ (i : ι), (S i)
              @[simp]
              theorem AddSubgroup.coe_iInf {G : Type u_1} [AddGroup G] {ι : Sort u_2} {S : ιAddSubgroup G} :
              (⨅ (i : ι), S i) = ⋂ (i : ι), (S i)

              Subgroups of a group form a complete lattice.

              Equations

              The AddSubgroups of an AddGroup form a complete lattice.

              Equations
              theorem Subgroup.mem_sup_left {G : Type u_1} [Group G] {S T : Subgroup G} {x : G} :
              x Sx S T
              theorem AddSubgroup.mem_sup_left {G : Type u_1} [AddGroup G] {S T : AddSubgroup G} {x : G} :
              x Sx S T
              theorem Subgroup.mem_sup_right {G : Type u_1} [Group G] {S T : Subgroup G} {x : G} :
              x Tx S T
              theorem AddSubgroup.mem_sup_right {G : Type u_1} [AddGroup G] {S T : AddSubgroup G} {x : G} :
              x Tx S T
              theorem Subgroup.mul_mem_sup {G : Type u_1} [Group G] {S T : Subgroup G} {x y : G} (hx : x S) (hy : y T) :
              x * y S T
              theorem AddSubgroup.add_mem_sup {G : Type u_1} [AddGroup G] {S T : AddSubgroup G} {x y : G} (hx : x S) (hy : y T) :
              x + y S T
              theorem Subgroup.mem_iSup_of_mem {G : Type u_1} [Group G] {ι : Sort u_2} {S : ιSubgroup G} (i : ι) {x : G} :
              x S ix iSup S
              theorem AddSubgroup.mem_iSup_of_mem {G : Type u_1} [AddGroup G] {ι : Sort u_2} {S : ιAddSubgroup G} (i : ι) {x : G} :
              x S ix iSup S
              theorem Subgroup.mem_sSup_of_mem {G : Type u_1} [Group G] {S : Set (Subgroup G)} {s : Subgroup G} (hs : s S) {x : G} :
              x sx sSup S
              theorem AddSubgroup.mem_sSup_of_mem {G : Type u_1} [AddGroup G] {S : Set (AddSubgroup G)} {s : AddSubgroup G} (hs : s S) {x : G} :
              x sx sSup S
              Equations
              theorem Subgroup.eq_top_iff' {G : Type u_1} [Group G] (H : Subgroup G) :
              H = ∀ (x : G), x H
              theorem AddSubgroup.eq_top_iff' {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
              H = ∀ (x : G), x H
              def Subgroup.closure {G : Type u_1} [Group G] (k : Set G) :

              The Subgroup generated by a set.

              Equations
              Instances For
                def AddSubgroup.closure {G : Type u_1} [AddGroup G] (k : Set G) :

                The AddSubgroup generated by a set

                Equations
                Instances For
                  theorem Subgroup.mem_closure {G : Type u_1} [Group G] {k : Set G} {x : G} :
                  x closure k ∀ (K : Subgroup G), k Kx K
                  theorem AddSubgroup.mem_closure {G : Type u_1} [AddGroup G] {k : Set G} {x : G} :
                  x closure k ∀ (K : AddSubgroup G), k Kx K
                  @[simp]
                  theorem Subgroup.subset_closure {G : Type u_1} [Group G] {k : Set G} :
                  k (closure k)

                  The subgroup generated by a set includes the set.

                  @[simp]
                  theorem AddSubgroup.subset_closure {G : Type u_1} [AddGroup G] {k : Set G} :
                  k (closure k)

                  The AddSubgroup generated by a set includes the set.

                  theorem Subgroup.not_mem_of_not_mem_closure {G : Type u_1} [Group G] {k : Set G} {P : G} (hP : Pclosure k) :
                  Pk
                  theorem AddSubgroup.not_mem_of_not_mem_closure {G : Type u_1} [AddGroup G] {k : Set G} {P : G} (hP : Pclosure k) :
                  Pk
                  @[simp]
                  theorem Subgroup.closure_le {G : Type u_1} [Group G] (K : Subgroup G) {k : Set G} :
                  closure k K k K

                  A subgroup K includes closure k if and only if it includes k.

                  @[simp]
                  theorem AddSubgroup.closure_le {G : Type u_1} [AddGroup G] (K : AddSubgroup G) {k : Set G} :
                  closure k K k K

                  An additive subgroup K includes closure k if and only if it includes k

                  theorem Subgroup.closure_eq_of_le {G : Type u_1} [Group G] (K : Subgroup G) {k : Set G} (h₁ : k K) (h₂ : K closure k) :
                  theorem AddSubgroup.closure_eq_of_le {G : Type u_1} [AddGroup G] (K : AddSubgroup G) {k : Set G} (h₁ : k K) (h₂ : K closure k) :
                  theorem Subgroup.closure_induction {G : Type u_1} [Group G] {k : Set G} {p : (g : G) → g closure kProp} (mem : ∀ (x : G) (hx : x k), p x ) (one : p 1 ) (mul : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x hxp y hyp (x * y) ) (inv : ∀ (x : G) (hx : x closure k), p x hxp x⁻¹ ) {x : G} (hx : x closure k) :
                  p x hx

                  An induction principle for closure membership. If p holds for 1 and all elements of k, and is preserved under multiplication and inverse, then p holds for all elements of the closure of k.

                  See also Subgroup.closure_induction_left and Subgroup.closure_induction_right for versions that only require showing p is preserved by multiplication by elements in k.

                  theorem AddSubgroup.closure_induction {G : Type u_1} [AddGroup G] {k : Set G} {p : (g : G) → g closure kProp} (mem : ∀ (x : G) (hx : x k), p x ) (one : p 0 ) (mul : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x hxp y hyp (x + y) ) (inv : ∀ (x : G) (hx : x closure k), p x hxp (-x) ) {x : G} (hx : x closure k) :
                  p x hx

                  An induction principle for additive closure membership. If p holds for 0 and all elements of k, and is preserved under addition and inverses, then p holds for all elements of the additive closure of k.

                  See also AddSubgroup.closure_induction_left and AddSubgroup.closure_induction_left for versions that only require showing p is preserved by addition by elements in k.

                  @[deprecated Subgroup.closure_induction (since := "2024-10-10")]
                  theorem Subgroup.closure_induction' {G : Type u_1} [Group G] {k : Set G} {p : (g : G) → g closure kProp} (mem : ∀ (x : G) (hx : x k), p x ) (one : p 1 ) (mul : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x hxp y hyp (x * y) ) (inv : ∀ (x : G) (hx : x closure k), p x hxp x⁻¹ ) {x : G} (hx : x closure k) :
                  p x hx

                  Alias of Subgroup.closure_induction.


                  An induction principle for closure membership. If p holds for 1 and all elements of k, and is preserved under multiplication and inverse, then p holds for all elements of the closure of k.

                  See also Subgroup.closure_induction_left and Subgroup.closure_induction_right for versions that only require showing p is preserved by multiplication by elements in k.

                  theorem Subgroup.closure_induction₂ {G : Type u_1} [Group G] {k : Set G} {p : (x y : G) → x closure ky closure kProp} (mem : ∀ (x y : G) (hx : x k) (hy : y k), p x y ) (one_left : ∀ (x : G) (hx : x closure k), p 1 x hx) (one_right : ∀ (x : G) (hx : x closure k), p x 1 hx ) (mul_left : ∀ (x y z : G) (hx : x closure k) (hy : y closure k) (hz : z closure k), p x z hx hzp y z hy hzp (x * y) z hz) (mul_right : ∀ (y z x : G) (hy : y closure k) (hz : z closure k) (hx : x closure k), p x y hx hyp x z hx hzp x (y * z) hx ) (inv_left : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x y hx hyp x⁻¹ y hy) (inv_right : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x y hx hyp x y⁻¹ hx ) {x y : G} (hx : x closure k) (hy : y closure k) :
                  p x y hx hy

                  An induction principle for closure membership for predicates with two arguments.

                  theorem AddSubgroup.closure_induction₂ {G : Type u_1} [AddGroup G] {k : Set G} {p : (x y : G) → x closure ky closure kProp} (mem : ∀ (x y : G) (hx : x k) (hy : y k), p x y ) (one_left : ∀ (x : G) (hx : x closure k), p 0 x hx) (one_right : ∀ (x : G) (hx : x closure k), p x 0 hx ) (mul_left : ∀ (x y z : G) (hx : x closure k) (hy : y closure k) (hz : z closure k), p x z hx hzp y z hy hzp (x + y) z hz) (mul_right : ∀ (y z x : G) (hy : y closure k) (hz : z closure k) (hx : x closure k), p x y hx hyp x z hx hzp x (y + z) hx ) (inv_left : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x y hx hyp (-x) y hy) (inv_right : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x y hx hyp x (-y) hx ) {x y : G} (hx : x closure k) (hy : y closure k) :
                  p x y hx hy

                  An induction principle for additive closure membership, for predicates with two arguments.

                  closure forms a Galois insertion with the coercion to set.

                  Equations
                  Instances For

                    closure forms a Galois insertion with the coercion to set.

                    Equations
                    Instances For
                      theorem Subgroup.closure_mono {G : Type u_1} [Group G] ⦃h k : Set G (h' : h k) :

                      Subgroup closure of a set is monotone in its argument: if h ⊆ k, then closure h ≤ closure k.

                      theorem AddSubgroup.closure_mono {G : Type u_1} [AddGroup G] ⦃h k : Set G (h' : h k) :

                      Additive subgroup closure of a set is monotone in its argument: if h ⊆ k, then closure h ≤ closure k

                      @[simp]
                      theorem Subgroup.closure_eq {G : Type u_1} [Group G] (K : Subgroup G) :
                      closure K = K

                      Closure of a subgroup K equals K.

                      @[simp]
                      theorem AddSubgroup.closure_eq {G : Type u_1} [AddGroup G] (K : AddSubgroup G) :
                      closure K = K

                      Additive closure of an additive subgroup K equals K

                      @[simp]
                      @[simp]
                      theorem Subgroup.closure_union {G : Type u_1} [Group G] (s t : Set G) :
                      theorem AddSubgroup.closure_union {G : Type u_1} [AddGroup G] (s t : Set G) :
                      theorem Subgroup.sup_eq_closure {G : Type u_1} [Group G] (H H' : Subgroup G) :
                      H H' = closure (H H')
                      theorem AddSubgroup.sup_eq_closure {G : Type u_1} [AddGroup G] (H H' : AddSubgroup G) :
                      H H' = closure (H H')
                      theorem Subgroup.closure_iUnion {G : Type u_1} [Group G] {ι : Sort u_2} (s : ιSet G) :
                      closure (⋃ (i : ι), s i) = ⨆ (i : ι), closure (s i)
                      theorem AddSubgroup.closure_iUnion {G : Type u_1} [AddGroup G] {ι : Sort u_2} (s : ιSet G) :
                      closure (⋃ (i : ι), s i) = ⨆ (i : ι), closure (s i)
                      @[simp]
                      theorem Subgroup.closure_eq_bot_iff {G : Type u_1} [Group G] {k : Set G} :
                      closure k = k {1}
                      @[simp]
                      theorem AddSubgroup.closure_eq_bot_iff {G : Type u_1} [AddGroup G] {k : Set G} :
                      closure k = k {0}
                      theorem Subgroup.iSup_eq_closure {G : Type u_1} [Group G] {ι : Sort u_2} (p : ιSubgroup G) :
                      ⨆ (i : ι), p i = closure (⋃ (i : ι), (p i))
                      theorem AddSubgroup.iSup_eq_closure {G : Type u_1} [AddGroup G] {ι : Sort u_2} (p : ιAddSubgroup G) :
                      ⨆ (i : ι), p i = closure (⋃ (i : ι), (p i))
                      theorem Subgroup.mem_closure_singleton {G : Type u_1} [Group G] {x y : G} :
                      y closure {x} ∃ (n : ), x ^ n = y

                      The subgroup generated by an element of a group equals the set of integer number powers of the element.

                      theorem AddSubgroup.mem_closure_singleton {G : Type u_1} [AddGroup G] {x y : G} :
                      y closure {x} ∃ (n : ), n x = y

                      The AddSubgroup generated by an element of an AddGroup equals the set of natural number multiples of the element.

                      @[simp]
                      theorem Subgroup.mem_closure_singleton_self {G : Type u_1} [Group G] (x : G) :
                      x closure {x}
                      @[simp]
                      theorem AddSubgroup.mem_closure_singleton_self {G : Type u_1} [AddGroup G] (x : G) :
                      x closure {x}
                      theorem Subgroup.le_closure_toSubmonoid {G : Type u_1} [Group G] (S : Set G) :
                      Submonoid.closure S (closure S).toSubmonoid
                      theorem Subgroup.mem_iSup_of_directed {G : Type u_1} [Group G] {ι : Sort u_2} [hι : Nonempty ι] {K : ιSubgroup G} (hK : Directed (fun (x1 x2 : Subgroup G) => x1 x2) K) {x : G} :
                      x iSup K ∃ (i : ι), x K i
                      theorem AddSubgroup.mem_iSup_of_directed {G : Type u_1} [AddGroup G] {ι : Sort u_2} [hι : Nonempty ι] {K : ιAddSubgroup G} (hK : Directed (fun (x1 x2 : AddSubgroup G) => x1 x2) K) {x : G} :
                      x iSup K ∃ (i : ι), x K i
                      theorem Subgroup.coe_iSup_of_directed {G : Type u_1} [Group G] {ι : Sort u_2} [Nonempty ι] {S : ιSubgroup G} (hS : Directed (fun (x1 x2 : Subgroup G) => x1 x2) S) :
                      (⨆ (i : ι), S i) = ⋃ (i : ι), (S i)
                      theorem AddSubgroup.coe_iSup_of_directed {G : Type u_1} [AddGroup G] {ι : Sort u_2} [Nonempty ι] {S : ιAddSubgroup G} (hS : Directed (fun (x1 x2 : AddSubgroup G) => x1 x2) S) :
                      (⨆ (i : ι), S i) = ⋃ (i : ι), (S i)
                      theorem Subgroup.mem_sSup_of_directedOn {G : Type u_1} [Group G] {K : Set (Subgroup G)} (Kne : K.Nonempty) (hK : DirectedOn (fun (x1 x2 : Subgroup G) => x1 x2) K) {x : G} :
                      x sSup K sK, x s
                      theorem AddSubgroup.mem_sSup_of_directedOn {G : Type u_1} [AddGroup G] {K : Set (AddSubgroup G)} (Kne : K.Nonempty) (hK : DirectedOn (fun (x1 x2 : AddSubgroup G) => x1 x2) K) {x : G} :
                      x sSup K sK, x s
                      theorem Subgroup.mem_sup {C : Type u_2} [CommGroup C] {s t : Subgroup C} {x : C} :
                      x s t ys, zt, y * z = x
                      theorem AddSubgroup.mem_sup {C : Type u_2} [AddCommGroup C] {s t : AddSubgroup C} {x : C} :
                      x s t ys, zt, y + z = x
                      theorem Subgroup.mem_sup' {C : Type u_2} [CommGroup C] {s t : Subgroup C} {x : C} :
                      x s t ∃ (y : s) (z : t), y * z = x
                      theorem AddSubgroup.mem_sup' {C : Type u_2} [AddCommGroup C] {s t : AddSubgroup C} {x : C} :
                      x s t ∃ (y : s) (z : t), y + z = x
                      theorem Subgroup.mem_closure_pair {C : Type u_2} [CommGroup C] {x y z : C} :
                      z closure {x, y} ∃ (m : ) (n : ), x ^ m * y ^ n = z
                      theorem AddSubgroup.mem_closure_pair {C : Type u_2} [AddCommGroup C] {x y z : C} :
                      z closure {x, y} ∃ (m : ) (n : ), m x + n y = z
                      theorem Subgroup.disjoint_def {G : Type u_1} [Group G] {H₁ H₂ : Subgroup G} :
                      Disjoint H₁ H₂ ∀ {x : G}, x H₁x H₂x = 1
                      theorem AddSubgroup.disjoint_def {G : Type u_1} [AddGroup G] {H₁ H₂ : AddSubgroup G} :
                      Disjoint H₁ H₂ ∀ {x : G}, x H₁x H₂x = 0
                      theorem Subgroup.disjoint_def' {G : Type u_1} [Group G] {H₁ H₂ : Subgroup G} :
                      Disjoint H₁ H₂ ∀ {x y : G}, x H₁y H₂x = yx = 1
                      theorem AddSubgroup.disjoint_def' {G : Type u_1} [AddGroup G] {H₁ H₂ : AddSubgroup G} :
                      Disjoint H₁ H₂ ∀ {x y : G}, x H₁y H₂x = yx = 0
                      theorem Subgroup.disjoint_iff_mul_eq_one {G : Type u_1} [Group G] {H₁ H₂ : Subgroup G} :
                      Disjoint H₁ H₂ ∀ {x y : G}, x H₁y H₂x * y = 1x = 1 y = 1
                      theorem AddSubgroup.disjoint_iff_add_eq_zero {G : Type u_1} [AddGroup G] {H₁ H₂ : AddSubgroup G} :
                      Disjoint H₁ H₂ ∀ {x y : G}, x H₁y H₂x + y = 0x = 0 y = 0
                      theorem Subgroup.mul_injective_of_disjoint {G : Type u_1} [Group G] {H₁ H₂ : Subgroup G} (h : Disjoint H₁ H₂) :
                      Function.Injective fun (g : H₁ × H₂) => g.1 * g.2
                      theorem AddSubgroup.add_injective_of_disjoint {G : Type u_1} [AddGroup G] {H₁ H₂ : AddSubgroup G} (h : Disjoint H₁ H₂) :
                      Function.Injective fun (g : H₁ × H₂) => g.1 + g.2