Bornology structure on products and subtypes #
In this file we define Bornology
and BoundedSpace
instances on α × β
, Π i, π i
, and
{x // p x}
. We also prove basic lemmas about Bornology.cobounded
and Bornology.IsBounded
on these types.
Equations
- Prod.instBornology = { cobounded' := (Bornology.cobounded α).coprod (Bornology.cobounded β), le_cofinite' := ⋯ }
instance
Pi.instBornology
{ι : Type u_3}
{π : ι → Type u_4}
[(i : ι) → Bornology (π i)]
:
Bornology ((i : ι) → π i)
Equations
- Pi.instBornology = { cobounded' := Filter.coprodᵢ fun (i : ι) => Bornology.cobounded (π i), le_cofinite' := ⋯ }
@[reducible, inline]
Inverse image of a bornology.
Equations
- Bornology.induced f = { cobounded' := Filter.comap f (Bornology.cobounded β), le_cofinite' := ⋯ }
Instances For
Bounded sets in α × β
#
Bounded sets in Π i, π i
#
theorem
Bornology.cobounded_pi
{ι : Type u_3}
{π : ι → Type u_4}
[(i : ι) → Bornology (π i)]
:
cobounded ((i : ι) → π i) = Filter.coprodᵢ fun (i : ι) => cobounded (π i)
theorem
Bornology.IsBounded.image_eval
{ι : Type u_3}
{π : ι → Type u_4}
[(i : ι) → Bornology (π i)]
{s : Set ((i : ι) → π i)}
(hs : IsBounded s)
(i : ι)
:
IsBounded (Function.eval i '' s)
Bounded sets in {x // p x}
#
Bounded spaces #
instance
instBoundedSpaceProd
{α : Type u_1}
{β : Type u_2}
[Bornology α]
[Bornology β]
[BoundedSpace α]
[BoundedSpace β]
:
BoundedSpace (α × β)
instance
instBoundedSpaceForall
{ι : Type u_3}
{π : ι → Type u_4}
[(i : ι) → Bornology (π i)]
[∀ (i : ι), BoundedSpace (π i)]
:
BoundedSpace ((i : ι) → π i)
theorem
boundedSpace_subtype_iff
{α : Type u_1}
[Bornology α]
{p : α → Prop}
:
BoundedSpace (Subtype p) ↔ Bornology.IsBounded {x : α | p x}
theorem
Bornology.IsBounded.boundedSpace_subtype
{α : Type u_1}
[Bornology α]
{p : α → Prop}
:
IsBounded {x : α | p x} → BoundedSpace (Subtype p)
Alias of the reverse direction of boundedSpace_subtype_iff
.
theorem
Bornology.IsBounded.boundedSpace_val
{α : Type u_1}
[Bornology α]
{s : Set α}
:
IsBounded s → BoundedSpace ↑s
Alias of the reverse direction of boundedSpace_val_set_iff
.
instance
instBoundedSpaceSubtype
{α : Type u_1}
[Bornology α]
[BoundedSpace α]
{p : α → Prop}
:
BoundedSpace (Subtype p)
Additive
, Multiplicative
#
The bornology on those type synonyms is inherited without change.
Equations
- instBornologyAdditive = inst✝
Equations
- instBornologyMultiplicative = inst✝
instance
instBoundedSpaceAdditive
{α : Type u_1}
[Bornology α]
[BoundedSpace α]
:
BoundedSpace (Additive α)
Order dual #
The bornology on this type synonym is inherited without change.
Equations
- instBornologyOrderDual = inst✝