Star structures on bounded continuous functions #
Star structures #
In this section, if β
is a normed ⋆-group, then so is the space of bounded
continuous functions from α
to β
, by using the star operation pointwise.
If 𝕜
is normed field and a ⋆-ring over which β
is a normed algebra and a
star module, then the space of bounded continuous functions from α
to β
is a star module.
If β
is a ⋆-ring in addition to being a normed ⋆-group, then α →ᵇ β
inherits a ⋆-ring structure.
In summary, if β
is a C⋆-algebra over 𝕜
, then so is α →ᵇ β
; note that
completeness is guaranteed when β
is complete (see
BoundedContinuousFunction.complete
).
The right-hand side of this equality can be parsed star ∘ ⇑f
because of the
instance Pi.instStarForAll
. Upon inspecting the goal, one sees ⊢ ↑(star f) = star ↑f
.
Equations
The ⋆-algebra-homomorphism forgetting that a bounded continuous function is bounded.
Equations
- BoundedContinuousFunction.toContinuousMapStarₐ 𝕜 = { toAlgHom := BoundedContinuousFunction.toContinuousMapₐ 𝕜, map_star' := ⋯ }