Documentation

Mathlib.Topology.Exterior

Exterior of a set #

We define exterior s to be the intersection of all neighborhoods of s, see Topology/Defs/Filter. Note that this construction has no standard name in the literature.

In this file we prove basic properties of this operation.

theorem exterior_singleton_eq_ker_nhds {X : Type u_2} [TopologicalSpace X] (x : X) :
exterior {x} = (nhds x).ker
@[simp]
theorem mem_exterior_singleton {X : Type u_2} [TopologicalSpace X] {x : X} {y : X} :
x exterior {y} x y
theorem exterior_def {X : Type u_2} [TopologicalSpace X] (s : Set X) :
exterior s = ⋂₀ {t : Set X | IsOpen t s t}
theorem mem_exterior {X : Type u_2} [TopologicalSpace X] {s : Set X} {x : X} :
x exterior s ∀ (U : Set X), IsOpen Us Ux U
theorem subset_exterior_iff {X : Type u_2} [TopologicalSpace X] {s : Set X} {t : Set X} :
s exterior t ∀ (U : Set X), IsOpen Ut Us U
theorem subset_exterior {X : Type u_2} [TopologicalSpace X] {s : Set X} :
theorem exterior_minimal {X : Type u_2} [TopologicalSpace X] {s : Set X} {t : Set X} (h₁ : s t) (h₂ : IsOpen t) :
theorem IsOpen.exterior_eq {X : Type u_2} [TopologicalSpace X] {s : Set X} (h : IsOpen s) :
theorem IsOpen.exterior_subset {X : Type u_2} [TopologicalSpace X] {s : Set X} {t : Set X} (ht : IsOpen t) :
@[deprecated IsOpen.exterior_subset]
theorem IsOpen.exterior_subset_iff {X : Type u_2} [TopologicalSpace X] {s : Set X} {t : Set X} (ht : IsOpen t) :

Alias of IsOpen.exterior_subset.

@[simp]
theorem exterior_iUnion {ι : Sort u_1} {X : Type u_2} [TopologicalSpace X] (s : ιSet X) :
exterior (⋃ (i : ι), s i) = ⋃ (i : ι), exterior (s i)
@[simp]
theorem exterior_union {X : Type u_2} [TopologicalSpace X] (s : Set X) (t : Set X) :
@[simp]
theorem exterior_sUnion {X : Type u_2} [TopologicalSpace X] (S : Set (Set X)) :
exterior (⋃₀ S) = sS, exterior s
theorem mem_exterior_iff_specializes {X : Type u_2} [TopologicalSpace X] {s : Set X} {x : X} :
x exterior s ys, x y
theorem exterior_mono {X : Type u_2} [TopologicalSpace X] :
Monotone exterior
theorem exterior_subset_exterior {X : Type u_2} [TopologicalSpace X] {s : Set X} {t : Set X} (h : s t) :

This name was used to be used for the Iff version, see exterior_subset_exterior_iff_nhdsSet.

theorem specializes_iff_exterior_subset {X : Type u_2} [TopologicalSpace X] {x : X} {y : X} :
theorem exterior_iInter_subset {ι : Sort u_1} {X : Type u_2} [TopologicalSpace X] {s : ιSet X} :
exterior (⋂ (i : ι), s i) ⋂ (i : ι), exterior (s i)
theorem exterior_inter_subset {X : Type u_2} [TopologicalSpace X] {s : Set X} {t : Set X} :
theorem exterior_sInter_subset {X : Type u_2} [TopologicalSpace X] {s : Set (Set X)} :
exterior (⋂₀ s) xs, exterior x
@[simp]
@[simp]
theorem exterior_univ {X : Type u_2} [TopologicalSpace X] :
exterior Set.univ = Set.univ
@[simp]
theorem exterior_eq_empty {X : Type u_2} [TopologicalSpace X] {s : Set X} :
@[simp]
theorem nhdsSet_exterior {X : Type u_2} [TopologicalSpace X] (s : Set X) :
@[simp]
theorem exterior_exterior {X : Type u_2} [TopologicalSpace X] (s : Set X) :