Documentation

Mathlib.Topology.NhdsKer

Neighborhoods kernel of a set #

In Mathlib/Topology/Defs/Filter.lean, nhdsKer s is defined to be the intersection of all neighborhoods of s. Note that this construction has no standard name in the literature.

In this file we prove basic properties of this operation.

@[deprecated nhdsKer_singleton_eq_ker_nhds (since := "2025-07-09")]

Alias of nhdsKer_singleton_eq_ker_nhds.

@[simp]
theorem mem_nhdsKer_singleton {X : Type u_2} [TopologicalSpace X] {x y : X} :
@[deprecated mem_nhdsKer_singleton (since := "2025-07-09")]
theorem mem_exterior_singleton {X : Type u_2} [TopologicalSpace X] {x y : X} :

Alias of mem_nhdsKer_singleton.

theorem nhdsKer_def {X : Type u_2} [TopologicalSpace X] (s : Set X) :
@[deprecated nhdsKer_def (since := "2025-07-09")]
theorem exterior_def {X : Type u_2} [TopologicalSpace X] (s : Set X) :

Alias of nhdsKer_def.

theorem mem_nhdsKer {X : Type u_2} [TopologicalSpace X] {s : Set X} {x : X} :
x nhdsKer s ∀ (U : Set X), IsOpen Us Ux U
@[deprecated mem_nhdsKer (since := "2025-07-09")]
theorem mem_exterior {X : Type u_2} [TopologicalSpace X] {s : Set X} {x : X} :
x nhdsKer s ∀ (U : Set X), IsOpen Us Ux U

Alias of mem_nhdsKer.

theorem subset_nhdsKer_iff {X : Type u_2} [TopologicalSpace X] {s t : Set X} :
s nhdsKer t ∀ (U : Set X), IsOpen Ut Us U
@[deprecated subset_nhdsKer_iff (since := "2025-07-09")]
theorem subset_exterior_iff {X : Type u_2} [TopologicalSpace X] {s t : Set X} :
s nhdsKer t ∀ (U : Set X), IsOpen Ut Us U

Alias of subset_nhdsKer_iff.

theorem subset_nhdsKer {X : Type u_2} [TopologicalSpace X] {s : Set X} :
@[deprecated subset_nhdsKer (since := "2025-07-09")]
theorem subset_exterior {X : Type u_2} [TopologicalSpace X] {s : Set X} :

Alias of subset_nhdsKer.

theorem nhdsKer_minimal {X : Type u_2} [TopologicalSpace X] {s t : Set X} (h₁ : s t) (h₂ : IsOpen t) :
@[deprecated nhdsKer_minimal (since := "2025-07-09")]
theorem exterior_minimal {X : Type u_2} [TopologicalSpace X] {s t : Set X} (h₁ : s t) (h₂ : IsOpen t) :

Alias of nhdsKer_minimal.

theorem IsOpen.nhdsKer_eq {X : Type u_2} [TopologicalSpace X] {s : Set X} (h : IsOpen s) :
@[deprecated IsOpen.nhdsKer_eq (since := "2025-07-09")]
theorem IsOpen.exterior_eq {X : Type u_2} [TopologicalSpace X] {s : Set X} (h : IsOpen s) :

Alias of IsOpen.nhdsKer_eq.

theorem IsOpen.nhdsKer_subset {X : Type u_2} [TopologicalSpace X] {s t : Set X} (ht : IsOpen t) :
nhdsKer s t s t
@[deprecated IsOpen.nhdsKer_subset (since := "2025-07-09")]
theorem IsOpen.exterior_subset {X : Type u_2} [TopologicalSpace X] {s t : Set X} (ht : IsOpen t) :
nhdsKer s t s t

Alias of IsOpen.nhdsKer_subset.

@[simp]
theorem nhdsKer_iUnion {ι : Sort u_1} {X : Type u_2} [TopologicalSpace X] (s : ιSet X) :
nhdsKer (⋃ (i : ι), s i) = ⋃ (i : ι), nhdsKer (s i)
@[deprecated nhdsKer_iUnion (since := "2025-07-09")]
theorem exterior_iUnion {ι : Sort u_1} {X : Type u_2} [TopologicalSpace X] (s : ιSet X) :
nhdsKer (⋃ (i : ι), s i) = ⋃ (i : ι), nhdsKer (s i)

Alias of nhdsKer_iUnion.

@[simp]
theorem nhdsKer_union {X : Type u_2} [TopologicalSpace X] (s t : Set X) :
@[deprecated nhdsKer_union (since := "2025-07-09")]
theorem exterior_union {X : Type u_2} [TopologicalSpace X] (s t : Set X) :

Alias of nhdsKer_union.

@[simp]
theorem nhdsKer_sUnion {X : Type u_2} [TopologicalSpace X] (S : Set (Set X)) :
nhdsKer (⋃₀ S) = sS, nhdsKer s
@[deprecated nhdsKer_sUnion (since := "2025-07-09")]
theorem exterior_sUnion {X : Type u_2} [TopologicalSpace X] (S : Set (Set X)) :
nhdsKer (⋃₀ S) = sS, nhdsKer s

Alias of nhdsKer_sUnion.

theorem mem_nhdsKer_iff_specializes {X : Type u_2} [TopologicalSpace X] {s : Set X} {x : X} :
x nhdsKer s ys, x y
@[deprecated mem_nhdsKer_iff_specializes (since := "2025-07-09")]
theorem mem_exterior_iff_specializes {X : Type u_2} [TopologicalSpace X] {s : Set X} {x : X} :
x nhdsKer s ys, x y

Alias of mem_nhdsKer_iff_specializes.

@[deprecated nhdsKer_mono (since := "2025-07-09")]

Alias of nhdsKer_mono.

theorem nhdsKer_subset_nhdsKer {X : Type u_2} [TopologicalSpace X] {s t : Set X} (h : s t) :

This name was used to be used for the Iff version, see nhdsKer_subset_nhdsKer_iff_nhdsSet.

@[deprecated nhdsKer_subset_nhdsKer (since := "2025-07-09")]
theorem exterior_subset_exterior {X : Type u_2} [TopologicalSpace X] {s t : Set X} (h : s t) :

Alias of nhdsKer_subset_nhdsKer.


This name was used to be used for the Iff version, see nhdsKer_subset_nhdsKer_iff_nhdsSet.

@[deprecated nhdsKer_subset_nhdsKer_iff_nhdsSet (since := "2025-07-09")]

Alias of nhdsKer_subset_nhdsKer_iff_nhdsSet.

@[deprecated nhdsKer_eq_nhdsKer_iff_nhdsSet (since := "2025-07-09")]

Alias of nhdsKer_eq_nhdsKer_iff_nhdsSet.

@[deprecated specializes_iff_nhdsKer_subset (since := "2025-07-09")]

Alias of specializes_iff_nhdsKer_subset.

theorem nhdsKer_iInter_subset {ι : Sort u_1} {X : Type u_2} [TopologicalSpace X] {s : ιSet X} :
nhdsKer (⋂ (i : ι), s i) ⋂ (i : ι), nhdsKer (s i)
@[deprecated nhdsKer_iInter_subset (since := "2025-07-09")]
theorem exterior_iInter_subset {ι : Sort u_1} {X : Type u_2} [TopologicalSpace X] {s : ιSet X} :
nhdsKer (⋂ (i : ι), s i) ⋂ (i : ι), nhdsKer (s i)

Alias of nhdsKer_iInter_subset.

@[deprecated nhdsKer_inter_subset (since := "2025-07-09")]
theorem exterior_inter_subset {X : Type u_2} [TopologicalSpace X] {s t : Set X} :

Alias of nhdsKer_inter_subset.

theorem nhdsKer_sInter_subset {X : Type u_2} [TopologicalSpace X] {s : Set (Set X)} :
nhdsKer (⋂₀ s) xs, nhdsKer x
@[deprecated nhdsKer_sInter_subset (since := "2025-07-09")]
theorem exterior_sInter_subset {X : Type u_2} [TopologicalSpace X] {s : Set (Set X)} :
nhdsKer (⋂₀ s) xs, nhdsKer x

Alias of nhdsKer_sInter_subset.

@[simp]
@[deprecated nhdsKer_empty (since := "2025-07-09")]

Alias of nhdsKer_empty.

@[deprecated nhdsKer_univ (since := "2025-07-09")]

Alias of nhdsKer_univ.

@[simp]
theorem nhdsKer_eq_empty {X : Type u_2} [TopologicalSpace X] {s : Set X} :
@[deprecated nhdsKer_eq_empty (since := "2025-07-09")]
theorem exterior_eq_empty {X : Type u_2} [TopologicalSpace X] {s : Set X} :

Alias of nhdsKer_eq_empty.

@[simp]
theorem nhdsSet_nhdsKer {X : Type u_2} [TopologicalSpace X] (s : Set X) :
@[deprecated nhdsSet_nhdsKer (since := "2025-07-09")]
theorem nhdsSet_exterior {X : Type u_2} [TopologicalSpace X] (s : Set X) :

Alias of nhdsSet_nhdsKer.

@[simp]
theorem nhdsKer_nhdsKer {X : Type u_2} [TopologicalSpace X] (s : Set X) :
@[deprecated nhdsKer_nhdsKer (since := "2025-07-09")]
theorem exterior_exterior {X : Type u_2} [TopologicalSpace X] (s : Set X) :

Alias of nhdsKer_nhdsKer.