Properties of maps that are local at the target. #
We show that the following properties of continuous maps are local at the target :
IsInducing
IsEmbedding
IsOpenEmbedding
IsClosedEmbedding
Alias of Set.restrictPreimage_isInducing
.
Alias of Set.restrictPreimage_isInducing
.
Alias of Set.restrictPreimage_isInducing
.
Alias of Set.restrictPreimage_isInducing
.
Alias of Set.restrictPreimage_isEmbedding
.
Alias of Set.restrictPreimage_isEmbedding
.
Alias of Set.restrictPreimage_isEmbedding
.
Alias of Set.restrictPreimage_isEmbedding
.
Alias of Set.restrictPreimage_isOpenEmbedding
.
Alias of Set.restrictPreimage_isOpenEmbedding
.
Alias of Set.restrictPreimage_isOpenEmbedding
.
Alias of Set.restrictPreimage_isOpenEmbedding
.
Alias of Set.restrictPreimage_isClosedEmbedding
.
Alias of Set.restrictPreimage_isClosedEmbedding
.
Alias of Set.restrictPreimage_isClosedEmbedding
.
Alias of Set.restrictPreimage_isClosedEmbedding
.
Given a continuous map f : X → Y
between topological spaces.
Suppose we have an open cover V i
of the range of f
, and an open cover U i
of X
that is
coarser than the pullback of V
under f
.
To check that f
is an embedding it suffices to check that U i → Y
is an embedding for all i
.
Alias of isEmbedding_iff_of_iSup_eq_top
.
Alias of isOpenEmbedding_iff_isOpenEmbedding_of_iSup_eq_top
.
Alias of isClosedEmbedding_iff_isClosedEmbedding_of_iSup_eq_top
.