Documentation

Mathlib.Topology.LocalAtTarget

Properties of maps that are local at the target. #

We show that the following properties of continuous maps are local at the target :

theorem Set.restrictPreimage_isInducing {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (s : Set β) (h : Topology.IsInducing f) :
Topology.IsInducing (s.restrictPreimage f)
@[deprecated Set.restrictPreimage_isInducing]
theorem Set.restrictPreimage_inducing {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (s : Set β) (h : Topology.IsInducing f) :
Topology.IsInducing (s.restrictPreimage f)

Alias of Set.restrictPreimage_isInducing.

theorem Topology.IsInducing.restrictPreimage {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (s : Set β) (h : Topology.IsInducing f) :
Topology.IsInducing (s.restrictPreimage f)

Alias of Set.restrictPreimage_isInducing.

@[deprecated Topology.IsInducing.restrictPreimage]
theorem Inducing.restrictPreimage {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (s : Set β) (h : Topology.IsInducing f) :
Topology.IsInducing (s.restrictPreimage f)

Alias of Set.restrictPreimage_isInducing.


Alias of Set.restrictPreimage_isInducing.

theorem Set.restrictPreimage_isEmbedding {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (s : Set β) (h : Topology.IsEmbedding f) :
Topology.IsEmbedding (s.restrictPreimage f)
@[deprecated Set.restrictPreimage_isEmbedding]
theorem Set.restrictPreimage_embedding {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (s : Set β) (h : Topology.IsEmbedding f) :
Topology.IsEmbedding (s.restrictPreimage f)

Alias of Set.restrictPreimage_isEmbedding.

theorem Topology.IsEmbedding.restrictPreimage {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (s : Set β) (h : Topology.IsEmbedding f) :
Topology.IsEmbedding (s.restrictPreimage f)

Alias of Set.restrictPreimage_isEmbedding.

@[deprecated Topology.IsEmbedding.restrictPreimage]
theorem Embedding.restrictPreimage {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (s : Set β) (h : Topology.IsEmbedding f) :
Topology.IsEmbedding (s.restrictPreimage f)

Alias of Set.restrictPreimage_isEmbedding.


Alias of Set.restrictPreimage_isEmbedding.

theorem Set.restrictPreimage_isOpenEmbedding {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (s : Set β) (h : Topology.IsOpenEmbedding f) :
Topology.IsOpenEmbedding (s.restrictPreimage f)
@[deprecated Set.restrictPreimage_isOpenEmbedding]
theorem Set.restrictPreimage_openEmbedding {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (s : Set β) (h : Topology.IsOpenEmbedding f) :
Topology.IsOpenEmbedding (s.restrictPreimage f)

Alias of Set.restrictPreimage_isOpenEmbedding.

@[deprecated Topology.IsOpenEmbedding.restrictPreimage]
theorem OpenEmbedding.restrictPreimage {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (s : Set β) (h : Topology.IsOpenEmbedding f) :
Topology.IsOpenEmbedding (s.restrictPreimage f)

Alias of Set.restrictPreimage_isOpenEmbedding.


Alias of Set.restrictPreimage_isOpenEmbedding.

theorem Set.restrictPreimage_isClosedEmbedding {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (s : Set β) (h : Topology.IsClosedEmbedding f) :
Topology.IsClosedEmbedding (s.restrictPreimage f)
@[deprecated Set.restrictPreimage_isClosedEmbedding]
theorem Set.restrictPreimage_closedEmbedding {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (s : Set β) (h : Topology.IsClosedEmbedding f) :
Topology.IsClosedEmbedding (s.restrictPreimage f)

Alias of Set.restrictPreimage_isClosedEmbedding.

@[deprecated Topology.IsClosedEmbedding.restrictPreimage]
theorem ClosedEmbedding.restrictPreimage {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (s : Set β) (h : Topology.IsClosedEmbedding f) :
Topology.IsClosedEmbedding (s.restrictPreimage f)

Alias of Set.restrictPreimage_isClosedEmbedding.


Alias of Set.restrictPreimage_isClosedEmbedding.

theorem IsClosedMap.restrictPreimage {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (H : IsClosedMap f) (s : Set β) :
IsClosedMap (s.restrictPreimage f)
@[deprecated]
theorem Set.restrictPreimage_isClosedMap {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (s : Set β) (H : IsClosedMap f) :
IsClosedMap (s.restrictPreimage f)
theorem IsOpenMap.restrictPreimage {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (H : IsOpenMap f) (s : Set β) :
IsOpenMap (s.restrictPreimage f)
@[deprecated]
theorem Set.restrictPreimage_isOpenMap {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (s : Set β) (H : IsOpenMap f) :
IsOpenMap (s.restrictPreimage f)
theorem isOpen_iff_inter_of_iSup_eq_top {β : Type u_2} [TopologicalSpace β] {ι : Type u_3} {U : ιTopologicalSpace.Opens β} (hU : iSup U = ) (s : Set β) :
IsOpen s ∀ (i : ι), IsOpen (s (U i))
theorem isOpen_iff_coe_preimage_of_iSup_eq_top {β : Type u_2} [TopologicalSpace β] {ι : Type u_3} {U : ιTopologicalSpace.Opens β} (hU : iSup U = ) (s : Set β) :
IsOpen s ∀ (i : ι), IsOpen (Subtype.val ⁻¹' s)
theorem isClosed_iff_coe_preimage_of_iSup_eq_top {β : Type u_2} [TopologicalSpace β] {ι : Type u_3} {U : ιTopologicalSpace.Opens β} (hU : iSup U = ) (s : Set β) :
IsClosed s ∀ (i : ι), IsClosed (Subtype.val ⁻¹' s)
theorem isLocallyClosed_iff_coe_preimage_of_iSup_eq_top {β : Type u_2} [TopologicalSpace β] {ι : Type u_3} {U : ιTopologicalSpace.Opens β} (hU : iSup U = ) (s : Set β) :
IsLocallyClosed s ∀ (i : ι), IsLocallyClosed (Subtype.val ⁻¹' s)
theorem isOpenMap_iff_isOpenMap_of_iSup_eq_top {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {ι : Type u_3} {U : ιTopologicalSpace.Opens β} (hU : iSup U = ) :
IsOpenMap f ∀ (i : ι), IsOpenMap ((U i).carrier.restrictPreimage f)
theorem isClosedMap_iff_isClosedMap_of_iSup_eq_top {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {ι : Type u_3} {U : ιTopologicalSpace.Opens β} (hU : iSup U = ) :
IsClosedMap f ∀ (i : ι), IsClosedMap ((U i).carrier.restrictPreimage f)
theorem inducing_iff_inducing_of_iSup_eq_top {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {ι : Type u_3} {U : ιTopologicalSpace.Opens β} (hU : iSup U = ) (h : Continuous f) :
Topology.IsInducing f ∀ (i : ι), Topology.IsInducing ((U i).carrier.restrictPreimage f)
theorem isEmbedding_iff_of_iSup_eq_top {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {ι : Type u_3} {U : ιTopologicalSpace.Opens β} (hU : iSup U = ) (h : Continuous f) :
Topology.IsEmbedding f ∀ (i : ι), Topology.IsEmbedding ((U i).carrier.restrictPreimage f)
theorem isEmbedding_of_iSup_eq_top_of_preimage_subset_range {X : Type u_6} {Y : Type u_7} [TopologicalSpace X] [TopologicalSpace Y] (f : XY) (h : Continuous f) {ι : Type u_4} (U : ιTopologicalSpace.Opens Y) (hU : Set.range f (iSup U)) (V : ιType u_5) [(i : ι) → TopologicalSpace (V i)] (iV : (i : ι) → V iX) (hiV : ∀ (i : ι), Continuous (iV i)) (hV : ∀ (i : ι), f ⁻¹' (U i) Set.range (iV i)) (hV' : ∀ (i : ι), Topology.IsEmbedding (f iV i)) :

Given a continuous map f : X → Y between topological spaces. Suppose we have an open cover V i of the range of f, and an open cover U i of X that is coarser than the pullback of V under f. To check that f is an embedding it suffices to check that U i → Y is an embedding for all i.

@[deprecated isEmbedding_iff_of_iSup_eq_top]
theorem embedding_iff_embedding_of_iSup_eq_top {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {ι : Type u_3} {U : ιTopologicalSpace.Opens β} (hU : iSup U = ) (h : Continuous f) :
Topology.IsEmbedding f ∀ (i : ι), Topology.IsEmbedding ((U i).carrier.restrictPreimage f)

Alias of isEmbedding_iff_of_iSup_eq_top.

theorem isOpenEmbedding_iff_isOpenEmbedding_of_iSup_eq_top {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {ι : Type u_3} {U : ιTopologicalSpace.Opens β} (hU : iSup U = ) (h : Continuous f) :
Topology.IsOpenEmbedding f ∀ (i : ι), Topology.IsOpenEmbedding ((U i).carrier.restrictPreimage f)
@[deprecated isOpenEmbedding_iff_isOpenEmbedding_of_iSup_eq_top]
theorem openEmbedding_iff_openEmbedding_of_iSup_eq_top {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {ι : Type u_3} {U : ιTopologicalSpace.Opens β} (hU : iSup U = ) (h : Continuous f) :
Topology.IsOpenEmbedding f ∀ (i : ι), Topology.IsOpenEmbedding ((U i).carrier.restrictPreimage f)

Alias of isOpenEmbedding_iff_isOpenEmbedding_of_iSup_eq_top.

theorem isClosedEmbedding_iff_isClosedEmbedding_of_iSup_eq_top {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {ι : Type u_3} {U : ιTopologicalSpace.Opens β} (hU : iSup U = ) (h : Continuous f) :
Topology.IsClosedEmbedding f ∀ (i : ι), Topology.IsClosedEmbedding ((U i).carrier.restrictPreimage f)
theorem denseRange_iff_denseRange_of_iSup_eq_top {α : Type u_1} {β : Type u_2} [TopologicalSpace β] {f : αβ} {ι : Type u_3} {U : ιTopologicalSpace.Opens β} (hU : iSup U = ) :
DenseRange f ∀ (i : ι), DenseRange ((U i).carrier.restrictPreimage f)
@[deprecated isClosedEmbedding_iff_isClosedEmbedding_of_iSup_eq_top]
theorem closedEmbedding_iff_closedEmbedding_of_iSup_eq_top {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {ι : Type u_3} {U : ιTopologicalSpace.Opens β} (hU : iSup U = ) (h : Continuous f) :
Topology.IsClosedEmbedding f ∀ (i : ι), Topology.IsClosedEmbedding ((U i).carrier.restrictPreimage f)

Alias of isClosedEmbedding_iff_isClosedEmbedding_of_iSup_eq_top.