Documentation

Mathlib.Topology.Order.PartialSups

Continuity of partialSups #

In this file we prove that partialSups of a sequence of continuous functions is continuous as well as versions for Filter.Tendsto, ContinuousAt, ContinuousWithinAt, and ContinuousOn.

theorem Filter.Tendsto.partialSups {L : Type u_1} [SemilatticeSup L] [TopologicalSpace L] [ContinuousSup L] {α : Type u_2} {l : Filter α} {f : αL} {g : L} {n : } (hf : kn, Tendsto (f k) l (nhds (g k))) :
Tendsto ((partialSups f) n) l (nhds ((partialSups g) n))
theorem Filter.Tendsto.partialSups_apply {L : Type u_1} [SemilatticeSup L] [TopologicalSpace L] [ContinuousSup L] {α : Type u_2} {l : Filter α} {f : αL} {g : L} {n : } (hf : kn, Tendsto (f k) l (nhds (g k))) :
Tendsto (fun (a : α) => (partialSups fun (x : ) => f x a) n) l (nhds ((partialSups g) n))
theorem ContinuousAt.partialSups_apply {L : Type u_1} [SemilatticeSup L] [TopologicalSpace L] [ContinuousSup L] {X : Type u_2} [TopologicalSpace X] {f : XL} {n : } {x : X} (hf : kn, ContinuousAt (f k) x) :
ContinuousAt (fun (a : X) => (partialSups fun (x : ) => f x a) n) x
theorem ContinuousAt.partialSups {L : Type u_1} [SemilatticeSup L] [TopologicalSpace L] [ContinuousSup L] {X : Type u_2} [TopologicalSpace X] {f : XL} {n : } {x : X} (hf : kn, ContinuousAt (f k) x) :
theorem ContinuousWithinAt.partialSups_apply {L : Type u_1} [SemilatticeSup L] [TopologicalSpace L] [ContinuousSup L] {X : Type u_2} [TopologicalSpace X] {f : XL} {n : } {s : Set X} {x : X} (hf : kn, ContinuousWithinAt (f k) s x) :
ContinuousWithinAt (fun (a : X) => (partialSups fun (x : ) => f x a) n) s x
theorem ContinuousWithinAt.partialSups {L : Type u_1} [SemilatticeSup L] [TopologicalSpace L] [ContinuousSup L] {X : Type u_2} [TopologicalSpace X] {f : XL} {n : } {s : Set X} {x : X} (hf : kn, ContinuousWithinAt (f k) s x) :
theorem ContinuousOn.partialSups_apply {L : Type u_1} [SemilatticeSup L] [TopologicalSpace L] [ContinuousSup L] {X : Type u_2} [TopologicalSpace X] {f : XL} {n : } {s : Set X} (hf : kn, ContinuousOn (f k) s) :
ContinuousOn (fun (a : X) => (partialSups fun (x : ) => f x a) n) s
theorem ContinuousOn.partialSups {L : Type u_1} [SemilatticeSup L] [TopologicalSpace L] [ContinuousSup L] {X : Type u_2} [TopologicalSpace X] {f : XL} {n : } {s : Set X} (hf : kn, ContinuousOn (f k) s) :
theorem Continuous.partialSups_apply {L : Type u_1} [SemilatticeSup L] [TopologicalSpace L] [ContinuousSup L] {X : Type u_2} [TopologicalSpace X] {f : XL} {n : } (hf : kn, Continuous (f k)) :
Continuous fun (a : X) => (partialSups fun (x : ) => f x a) n
theorem Continuous.partialSups {L : Type u_1} [SemilatticeSup L] [TopologicalSpace L] [ContinuousSup L] {X : Type u_2} [TopologicalSpace X] {f : XL} {n : } (hf : kn, Continuous (f k)) :