Compact open covered sets #
In this file we define the notion of a compact-open covered set with respect to a family of
maps fᵢ : X i → S
. A set U
is compact-open covered by the family fᵢ
if it is the finite
union of images of compact open sets in the X i
.
This notion is not interesting, if the fᵢ
are open maps (see IsCompactOpenCovered.of_isOpenMap
).
This is used to define the fpqc topology of schemes, there a cover is given by a family of flat morphisms such that every compact open is compact-open covered.
Main results #
IsCompactOpenCovered.of_isOpenMap
: If all thefᵢ
are open maps, then every compact open ofS
is compact-open covered.
def
IsCompactOpenCovered
{S : Type u_1}
{ι : Type u_2}
{X : ι → Type u_3}
(f : (i : ι) → X i → S)
[(i : ι) → TopologicalSpace (X i)]
(U : Set S)
:
A set U
is compact-open covered by the family fᵢ : X i → S
, if
U
is the finite union of images of compact open sets in the X i
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
IsCompactOpenCovered.empty
{S : Type u_1}
{ι : Type u_2}
{X : ι → Type u_3}
{f : (i : ι) → X i → S}
[(i : ι) → TopologicalSpace (X i)]
:
theorem
IsCompactOpenCovered.iff_of_unique
{S : Type u_1}
{ι : Type u_2}
{X : ι → Type u_3}
{f : (i : ι) → X i → S}
[(i : ι) → TopologicalSpace (X i)]
{U : Set S}
[Unique ι]
:
theorem
IsCompactOpenCovered.id_iff_isOpen_and_isCompact
{S : Type u_1}
{U : Set S}
[TopologicalSpace S]
:
theorem
IsCompactOpenCovered.iff_isCompactOpenCovered_sigmaMk
{S : Type u_1}
{ι : Type u_2}
{X : ι → Type u_3}
{f : (i : ι) → X i → S}
[(i : ι) → TopologicalSpace (X i)]
{U : Set S}
:
IsCompactOpenCovered f U ↔ IsCompactOpenCovered (fun (x : Unit) (p : (i : ι) × X i) => f p.fst p.snd) U
theorem
IsCompactOpenCovered.of_iUnion_eq_of_finite
{S : Type u_1}
{ι : Type u_2}
{X : ι → Type u_3}
{f : (i : ι) → X i → S}
[(i : ι) → TopologicalSpace (X i)]
{U : Set S}
(s : Set (Set S))
(hs : ⋃ t ∈ s, t = U)
(hf : s.Finite)
(H : ∀ t ∈ s, IsCompactOpenCovered f t)
:
theorem
IsCompactOpenCovered.exists_mem_of_isBasis
{S : Type u_1}
{ι : Type u_2}
{X : ι → Type u_3}
{f : (i : ι) → X i → S}
[(i : ι) → TopologicalSpace (X i)]
{B : (i : ι) → Set (TopologicalSpace.Opens (X i))}
(hB : ∀ (i : ι), TopologicalSpace.Opens.IsBasis (B i))
(hBc : ∀ (i : ι), ∀ U ∈ B i, IsCompact U.carrier)
{U : Set S}
(hU : IsCompactOpenCovered f U)
:
If U
is compact-open covered and the X i
have a basis of compact opens,
U
can be written as the union of images of elements of the basis.
theorem
IsCompactOpenCovered.of_isOpenMap
{S : Type u_1}
{ι : Type u_2}
{X : ι → Type u_3}
{f : (i : ι) → X i → S}
[(i : ι) → TopologicalSpace (X i)]
[TopologicalSpace S]
[∀ (i : ι), PrespectralSpace (X i)]
(hfc : ∀ (i : ι), Continuous (f i))
(h : ∀ (i : ι), IsOpenMap (f i))
{U : Set S}
(hs : ∀ x ∈ U, ∃ (i : ι) (y : X i), f i y = x)
(hU : IsOpen U)
(hc : IsCompact U)
: