Documentation

Mathlib.Topology.Sets.CompactOpenCovered

Compact open covered sets #

In this file we define the notion of a compact-open covered set with respect to a family of maps fᵢ : X i → S. A set U is compact-open covered by the family fᵢ if it is the finite union of images of compact open sets in the X i.

This notion is not interesting, if the fᵢ are open maps (see IsCompactOpenCovered.of_isOpenMap).

This is used to define the fpqc topology of schemes, there a cover is given by a family of flat morphisms such that every compact open is compact-open covered.

Main results #

def IsCompactOpenCovered {S : Type u_1} {ι : Type u_2} {X : ιType u_3} (f : (i : ι) → X iS) [(i : ι) → TopologicalSpace (X i)] (U : Set S) :

A set U is compact-open covered by the family fᵢ : X i → S, if U is the finite union of images of compact open sets in the X i.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem IsCompactOpenCovered.empty {S : Type u_1} {ι : Type u_2} {X : ιType u_3} {f : (i : ι) → X iS} [(i : ι) → TopologicalSpace (X i)] :
    theorem IsCompactOpenCovered.iff_of_unique {S : Type u_1} {ι : Type u_2} {X : ιType u_3} {f : (i : ι) → X iS} [(i : ι) → TopologicalSpace (X i)] {U : Set S} [Unique ι] :
    theorem IsCompactOpenCovered.iff_isCompactOpenCovered_sigmaMk {S : Type u_1} {ι : Type u_2} {X : ιType u_3} {f : (i : ι) → X iS} [(i : ι) → TopologicalSpace (X i)] {U : Set S} :
    IsCompactOpenCovered f U IsCompactOpenCovered (fun (x : Unit) (p : (i : ι) × X i) => f p.fst p.snd) U
    theorem IsCompactOpenCovered.of_iUnion_eq_of_finite {S : Type u_1} {ι : Type u_2} {X : ιType u_3} {f : (i : ι) → X iS} [(i : ι) → TopologicalSpace (X i)] {U : Set S} (s : Set (Set S)) (hs : ts, t = U) (hf : s.Finite) (H : ts, IsCompactOpenCovered f t) :
    theorem IsCompactOpenCovered.exists_mem_of_isBasis {S : Type u_1} {ι : Type u_2} {X : ιType u_3} {f : (i : ι) → X iS} [(i : ι) → TopologicalSpace (X i)] {B : (i : ι) → Set (TopologicalSpace.Opens (X i))} (hB : ∀ (i : ι), TopologicalSpace.Opens.IsBasis (B i)) (hBc : ∀ (i : ι), UB i, IsCompact U.carrier) {U : Set S} (hU : IsCompactOpenCovered f U) :
    ∃ (n : ) (a : Fin nι) (V : (i : Fin n) → TopologicalSpace.Opens (X (a i))), (∀ (i : Fin n), V i B (a i)) ⋃ (i : Fin n), f (a i) '' (V i) = U

    If U is compact-open covered and the X i have a basis of compact opens, U can be written as the union of images of elements of the basis.

    theorem IsCompactOpenCovered.of_isOpenMap {S : Type u_1} {ι : Type u_2} {X : ιType u_3} {f : (i : ι) → X iS} [(i : ι) → TopologicalSpace (X i)] [TopologicalSpace S] [∀ (i : ι), PrespectralSpace (X i)] (hfc : ∀ (i : ι), Continuous (f i)) (h : ∀ (i : ι), IsOpenMap (f i)) {U : Set S} (hs : xU, ∃ (i : ι) (y : X i), f i y = x) (hU : IsOpen U) (hc : IsCompact U) :