Documentation

Mathlib.Topology.Sober

Sober spaces #

A quasi-sober space is a topological space where every irreducible closed subset has a generic point. A sober space is a quasi-sober space where every irreducible closed subset has a unique generic point. This is if and only if the space is T0, and thus sober spaces can be stated via [QuasiSober α] [T0Space α].

Main definition #

def IsGenericPoint {α : Type u_1} [TopologicalSpace α] (x : α) (S : Set α) :

x is a generic point of S if S is the closure of x.

Equations
Instances For
    theorem isGenericPoint_def {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} :
    theorem IsGenericPoint.def {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} (h : IsGenericPoint x S) :
    closure {x} = S
    theorem isGenericPoint_closure {α : Type u_1} [TopologicalSpace α] {x : α} :
    theorem isGenericPoint_iff_specializes {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} :
    IsGenericPoint x S ∀ (y : α), x y y S
    theorem IsGenericPoint.specializes_iff_mem {α : Type u_1} [TopologicalSpace α] {x y : α} {S : Set α} (h : IsGenericPoint x S) :
    x y y S
    theorem IsGenericPoint.specializes {α : Type u_1} [TopologicalSpace α] {x y : α} {S : Set α} (h : IsGenericPoint x S) (h' : y S) :
    x y
    theorem IsGenericPoint.mem {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} (h : IsGenericPoint x S) :
    x S
    theorem IsGenericPoint.isClosed {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} (h : IsGenericPoint x S) :
    theorem IsGenericPoint.isIrreducible {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} (h : IsGenericPoint x S) :
    theorem IsGenericPoint.inseparable {α : Type u_1} [TopologicalSpace α] {x y : α} {S : Set α} (h : IsGenericPoint x S) (h' : IsGenericPoint y S) :
    theorem IsGenericPoint.eq {α : Type u_1} [TopologicalSpace α] {x y : α} {S : Set α} [T0Space α] (h : IsGenericPoint x S) (h' : IsGenericPoint y S) :
    x = y

    In a T₀ space, each set has at most one generic point.

    theorem IsGenericPoint.mem_open_set_iff {α : Type u_1} [TopologicalSpace α] {x : α} {S U : Set α} (h : IsGenericPoint x S) (hU : IsOpen U) :
    x U (S U).Nonempty
    theorem IsGenericPoint.disjoint_iff {α : Type u_1} [TopologicalSpace α] {x : α} {S U : Set α} (h : IsGenericPoint x S) (hU : IsOpen U) :
    Disjoint S U xU
    theorem IsGenericPoint.mem_closed_set_iff {α : Type u_1} [TopologicalSpace α] {x : α} {S Z : Set α} (h : IsGenericPoint x S) (hZ : IsClosed Z) :
    x Z S Z
    theorem IsGenericPoint.image {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {x : α} {S : Set α} (h : IsGenericPoint x S) {f : αβ} (hf : Continuous f) :
    IsGenericPoint (f x) (closure (f '' S))
    theorem isGenericPoint_iff_forall_closed {α : Type u_1} [TopologicalSpace α] {x : α} {S : Set α} (hS : IsClosed S) (hxS : x S) :
    IsGenericPoint x S ∀ (Z : Set α), IsClosed Zx ZS Z
    class QuasiSober (α : Type u_3) [TopologicalSpace α] :

    A space is sober if every irreducible closed subset has a generic point.

    Instances
      theorem quasiSober_iff (α : Type u_3) [TopologicalSpace α] :
      QuasiSober α ∀ {S : Set α}, IsIrreducible SIsClosed S∃ (x : α), IsGenericPoint x S
      noncomputable def IsIrreducible.genericPoint {α : Type u_1} [TopologicalSpace α] [QuasiSober α] {S : Set α} (hS : IsIrreducible S) :
      α

      A generic point of the closure of an irreducible space.

      Equations
      • hS.genericPoint = .choose
      Instances For
        theorem IsIrreducible.isGenericPoint_genericPoint {α : Type u_1} [TopologicalSpace α] [QuasiSober α] {S : Set α} (hS : IsIrreducible S) (hS' : IsClosed S) :
        IsGenericPoint hS.genericPoint S
        @[simp]
        theorem IsIrreducible.genericPoint_closure_eq {α : Type u_1} [TopologicalSpace α] [QuasiSober α] {S : Set α} (hS : IsIrreducible S) :
        closure {hS.genericPoint} = closure S
        theorem IsIrreducible.closure_genericPoint {α : Type u_1} [TopologicalSpace α] [QuasiSober α] {S : Set α} (hS : IsIrreducible S) (hS' : IsClosed S) :
        closure {hS.genericPoint} = S
        @[deprecated IsIrreducible.isGenericPoint_genericPoint_closure]
        theorem IsIrreducible.genericPoint_spec {α : Type u_1} [TopologicalSpace α] [QuasiSober α] {S : Set α} (hS : IsIrreducible S) :
        IsGenericPoint hS.genericPoint (closure S)

        Alias of IsIrreducible.isGenericPoint_genericPoint_closure.

        noncomputable def genericPoint (α : Type u_1) [TopologicalSpace α] [QuasiSober α] [IrreducibleSpace α] :
        α

        A generic point of a sober irreducible space.

        Equations
        Instances For
          @[simp]

          The closed irreducible subsets of a sober space bijects with the points of the space.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[deprecated Topology.IsClosedEmbedding.quasiSober]
            theorem ClosedEmbedding.quasiSober {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Topology.IsClosedEmbedding f) [QuasiSober β] :

            Alias of Topology.IsClosedEmbedding.quasiSober.

            @[deprecated Topology.IsOpenEmbedding.quasiSober]
            theorem OpenEmbedding.quasiSober {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : Topology.IsOpenEmbedding f) [QuasiSober β] :

            Alias of Topology.IsOpenEmbedding.quasiSober.

            theorem quasiSober_of_open_cover {α : Type u_1} [TopologicalSpace α] (S : Set (Set α)) (hS : ∀ (s : S), IsOpen s) [hS' : ∀ (s : S), QuasiSober s] (hS'' : ⋃₀ S = ) :

            A space is quasi sober if it can be covered by open quasi sober subsets.

            @[instance 100]
            instance T2Space.quasiSober {α : Type u_1} [TopologicalSpace α] [T2Space α] :

            Any Hausdorff space is a quasi-sober space because any irreducible set is a singleton.

            def genericPoints (α : Type u_1) [TopologicalSpace α] :
            Set α

            The set of generic points of irreducible components.

            Equations
            Instances For

              The irreducible component of a generic point

              Equations
              Instances For
                theorem genericPoints.component_injective {α : Type u_1} [TopologicalSpace α] [T0Space α] :
                Function.Injective genericPoints.component
                noncomputable def genericPoints.ofComponent {α : Type u_1} [TopologicalSpace α] [QuasiSober α] (x : (irreducibleComponents α)) :

                The generic point of an irreducible component.

                Equations
                Instances For
                  theorem genericPoints.finite {α : Type u_1} [TopologicalSpace α] [T0Space α] (h : (irreducibleComponents α).Finite) :
                  (genericPoints α).Finite
                  noncomputable def genericPoints.equiv {α : Type u_1} [TopologicalSpace α] [T0Space α] [QuasiSober α] :

                  In a sober space, the generic points corresponds bijectively to irreducible components

                  Equations
                  • genericPoints.equiv = { toFun := genericPoints.component, invFun := genericPoints.ofComponent, left_inv := , right_inv := }
                  Instances For
                    @[simp]
                    theorem genericPoints.equiv_apply {α : Type u_1} [TopologicalSpace α] [T0Space α] [QuasiSober α] (x : (genericPoints α)) :
                    genericPoints.equiv x = genericPoints.component x
                    @[simp]
                    theorem genericPoints.equiv_symm_apply {α : Type u_1} [TopologicalSpace α] [T0Space α] [QuasiSober α] (x : (irreducibleComponents α)) :
                    genericPoints.equiv.symm x = genericPoints.ofComponent x