Documentation

Mathlib.Topology.UniformSpace.LocallyUniformConvergence

Locally uniform convergence #

We define a sequence of functions Fₙ to converge locally uniformly to a limiting function f with respect to a filter p, spelled TendstoLocallyUniformly F f p, if for any x ∈ s and any entourage of the diagonal u, there is a neighbourhood v of x such that p-eventually we have (f y, Fₙ y) ∈ u for all y ∈ v.

It is important to note that this definition is somewhat non-standard; it is not in general equivalent to "every point has a neighborhood on which the convergence is uniform", which is the definition more commonly encountered in the literature. The reason is that in our definition the neighborhood v of x can depend on the entourage u; so our condition is a priori weaker than the usual one, although the two conditions are equivalent if the domain is locally compact.

We adopt this weaker condition because it is more general but apppears to be sufficient for the standard applications of locally-uniform convergence (in particular, for proving that a locally-uniform limit of continuous functions is continuous).

We also define variants for locally uniform convergence on a subset, called TendstoLocallyUniformlyOn F f p s.

Tags #

Uniform limit, uniform convergence, tends uniformly to

def TendstoLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] (F : ιαβ) (f : αβ) (p : Filter ι) (s : Set α) :

A sequence of functions Fₙ converges locally uniformly on a set s to a limiting function f with respect to a filter p if, for any entourage of the diagonal u, for any x ∈ s, one has p-eventually (f y, Fₙ y) ∈ u for all y in a neighborhood of x in s.

Equations
Instances For
    def TendstoLocallyUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] (F : ιαβ) (f : αβ) (p : Filter ι) :

    A sequence of functions Fₙ converges locally uniformly to a limiting function f with respect to a filter p if, for any entourage of the diagonal u, for any x, one has p-eventually (f y, Fₙ y) ∈ u for all y in a neighborhood of x.

    Equations
    Instances For
      theorem tendstoLocallyUniformlyOn_univ {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} :
      theorem tendstoLocallyUniformlyOn_iff_forall_tendsto {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} :
      TendstoLocallyUniformlyOn F f p s xs, Filter.Tendsto (fun (y : ι × α) => (f y.2, F y.1 y.2)) (p ×ˢ nhdsWithin x s) (uniformity β)
      theorem IsOpen.tendstoLocallyUniformlyOn_iff_forall_tendsto {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} (hs : IsOpen s) :
      TendstoLocallyUniformlyOn F f p s xs, Filter.Tendsto (fun (y : ι × α) => (f y.2, F y.1 y.2)) (p ×ˢ nhds x) (uniformity β)
      theorem tendstoLocallyUniformly_iff_forall_tendsto {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} :
      TendstoLocallyUniformly F f p ∀ (x : α), Filter.Tendsto (fun (y : ι × α) => (f y.2, F y.1 y.2)) (p ×ˢ nhds x) (uniformity β)
      theorem tendstoLocallyUniformlyOn_iff_tendstoLocallyUniformly_comp_coe {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} :
      TendstoLocallyUniformlyOn F f p s TendstoLocallyUniformly (fun (i : ι) (x : s) => F i x) (f Subtype.val) p
      theorem TendstoUniformlyOn.tendstoLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} (h : TendstoUniformlyOn F f p s) :
      theorem TendstoUniformly.tendstoLocallyUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} (h : TendstoUniformly F f p) :
      theorem TendstoLocallyUniformlyOn.mono {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s s' : Set α} {p : Filter ι} (h : TendstoLocallyUniformlyOn F f p s) (h' : s' s) :
      theorem tendstoLocallyUniformlyOn_iUnion {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {ι' : Sort u_5} {S : ι'Set α} (hS : ∀ (i : ι'), IsOpen (S i)) (h : ∀ (i : ι'), TendstoLocallyUniformlyOn F f p (S i)) :
      TendstoLocallyUniformlyOn F f p (⋃ (i : ι'), S i)
      theorem tendstoLocallyUniformlyOn_biUnion {α : Type u_1} {β : Type u_2} {γ : Type u_3} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} {s : Set γ} {S : γSet α} (hS : is, IsOpen (S i)) (h : is, TendstoLocallyUniformlyOn F f p (S i)) :
      TendstoLocallyUniformlyOn F f p (⋃ is, S i)
      theorem tendstoLocallyUniformlyOn_sUnion {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} (S : Set (Set α)) (hS : sS, IsOpen s) (h : sS, TendstoLocallyUniformlyOn F f p s) :
      theorem TendstoLocallyUniformlyOn.union {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s s' : Set α} {p : Filter ι} (hs₁ : IsOpen s) (hs₂ : IsOpen s') (h₁ : TendstoLocallyUniformlyOn F f p s) (h₂ : TendstoLocallyUniformlyOn F f p s') :
      theorem TendstoLocallyUniformly.tendstoLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} (h : TendstoLocallyUniformly F f p) :
      theorem tendstoLocallyUniformly_iff_tendstoUniformly_of_compactSpace {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} [CompactSpace α] :

      On a compact space, locally uniform convergence is just uniform convergence.

      theorem tendstoLocallyUniformlyOn_iff_tendstoUniformlyOn_of_compact {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} (hs : IsCompact s) :

      For a compact set s, locally uniform convergence on s is just uniform convergence on s.

      theorem TendstoLocallyUniformlyOn.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} [TopologicalSpace γ] {t : Set γ} (h : TendstoLocallyUniformlyOn F f p s) (g : γα) (hg : Set.MapsTo g t s) (cg : ContinuousOn g t) :
      TendstoLocallyUniformlyOn (fun (n : ι) => F n g) (f g) p t
      theorem TendstoLocallyUniformly.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} [TopologicalSpace γ] (h : TendstoLocallyUniformly F f p) (g : γα) (cg : Continuous g) :
      TendstoLocallyUniformly (fun (n : ι) => F n g) (f g) p
      theorem tendstoLocallyUniformlyOn_TFAE {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {s : Set α} [LocallyCompactSpace α] (G : ιαβ) (g : αβ) (p : Filter ι) (hs : IsOpen s) :
      [TendstoLocallyUniformlyOn G g p s, Ks, IsCompact KTendstoUniformlyOn G g p K, xs, vnhdsWithin x s, TendstoUniformlyOn G g p v].TFAE
      theorem tendstoLocallyUniformlyOn_iff_forall_isCompact {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} [LocallyCompactSpace α] (hs : IsOpen s) :
      TendstoLocallyUniformlyOn F f p s Ks, IsCompact KTendstoUniformlyOn F f p K
      theorem tendstoLocallyUniformly_iff_forall_isCompact {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} [LocallyCompactSpace α] :
      TendstoLocallyUniformly F f p ∀ (K : Set α), IsCompact KTendstoUniformlyOn F f p K
      theorem tendstoLocallyUniformlyOn_iff_filter {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} :
      theorem tendstoLocallyUniformly_iff_filter {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {p : Filter ι} :
      theorem TendstoLocallyUniformlyOn.tendsto_at {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} (hf : TendstoLocallyUniformlyOn F f p s) {a : α} (ha : a s) :
      Filter.Tendsto (fun (i : ι) => F i a) p (nhds (f a))
      theorem TendstoLocallyUniformlyOn.unique {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} [p.NeBot] [T2Space β] {g : αβ} (hf : TendstoLocallyUniformlyOn F f p s) (hg : TendstoLocallyUniformlyOn F g p s) :
      Set.EqOn f g s
      theorem TendstoLocallyUniformlyOn.congr {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} {G : ιαβ} (hf : TendstoLocallyUniformlyOn F f p s) (hg : ∀ (n : ι), Set.EqOn (F n) (G n) s) :
      theorem TendstoLocallyUniformlyOn.congr_right {α : Type u_1} {β : Type u_2} {ι : Type u_4} [TopologicalSpace α] [UniformSpace β] {F : ιαβ} {f : αβ} {s : Set α} {p : Filter ι} {g : αβ} (hf : TendstoLocallyUniformlyOn F f p s) (hg : Set.EqOn f g s) :