Documentation

Std.Data.DHashMap.Internal.Raw

This is an internal implementation file of the hash map. Users of the hash map should not rely on the contents of this file.

File contents: relating operations on Raw to operations on Raw₀

theorem Std.DHashMap.Internal.Raw.empty_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] {c : Nat} :
theorem Std.DHashMap.Internal.Raw.insert_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw α β} (h : m.WF) {a : α} {b : β a} :
m.insert a b = (Raw₀.insert m, a b).val
theorem Std.DHashMap.Internal.Raw.insert_val {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw₀ α β} {a : α} {b : β a} :
m.val.insert a b = (m.insert a b).val
theorem Std.DHashMap.Internal.Raw.insertIfNew_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw α β} (h : m.WF) {a : α} {b : β a} :
m.insertIfNew a b = (Raw₀.insertIfNew m, a b).val
theorem Std.DHashMap.Internal.Raw.insertIfNew_val {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw₀ α β} {a : α} {b : β a} :
theorem Std.DHashMap.Internal.Raw.containsThenInsert_snd_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw α β} (h : m.WF) {a : α} {b : β a} :
theorem Std.DHashMap.Internal.Raw.containsThenInsert_snd_val {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw₀ α β} {a : α} {b : β a} :
theorem Std.DHashMap.Internal.Raw.containsThenInsert_fst_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw α β} (h : m.WF) {a : α} {b : β a} :
theorem Std.DHashMap.Internal.Raw.containsThenInsert_fst_val {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw₀ α β} {a : α} {b : β a} :
theorem Std.DHashMap.Internal.Raw.containsThenInsertIfNew_snd_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw α β} (h : m.WF) {a : α} {b : β a} :
theorem Std.DHashMap.Internal.Raw.containsThenInsertIfNew_snd_val {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw₀ α β} {a : α} {b : β a} :
theorem Std.DHashMap.Internal.Raw.containsThenInsertIfNew_fst_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw α β} (h : m.WF) {a : α} {b : β a} :
theorem Std.DHashMap.Internal.Raw.containsThenInsertIfNew_fst_val {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw₀ α β} {a : α} {b : β a} :
theorem Std.DHashMap.Internal.Raw.getThenInsertIfNew?_snd_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {m : Raw α β} (h : m.WF) {a : α} {b : β a} :
theorem Std.DHashMap.Internal.Raw.getThenInsertIfNew?_snd_val {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {m : Raw₀ α β} {a : α} {b : β a} :
theorem Std.DHashMap.Internal.Raw.getThenInsertIfNew?_fst_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {m : Raw α β} (h : m.WF) {a : α} {b : β a} :
theorem Std.DHashMap.Internal.Raw.getThenInsertIfNew?_fst_val {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {m : Raw₀ α β} {a : α} {b : β a} :
theorem Std.DHashMap.Internal.Raw.get?_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {m : Raw α β} (h : m.WF) {a : α} :
m.get? a = Raw₀.get? m, a
theorem Std.DHashMap.Internal.Raw.get?_val {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {m : Raw₀ α β} {a : α} :
m.val.get? a = m.get? a
theorem Std.DHashMap.Internal.Raw.contains_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw α β} (h : m.WF) {a : α} :
m.contains a = Raw₀.contains m, a
theorem Std.DHashMap.Internal.Raw.contains_val {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw₀ α β} {a : α} :
theorem Std.DHashMap.Internal.Raw.get_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {m : Raw α β} {a : α} {h : a m} :
m.get a h = Raw₀.get m, a
theorem Std.DHashMap.Internal.Raw.get_val {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {m : Raw₀ α β} {a : α} {h : a m.val} :
m.val.get a h = m.get a
theorem Std.DHashMap.Internal.Raw.getD_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {m : Raw α β} (h : m.WF) {a : α} {fallback : β a} :
m.getD a fallback = Raw₀.getD m, a fallback
theorem Std.DHashMap.Internal.Raw.getD_val {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {m : Raw₀ α β} {a : α} {fallback : β a} :
m.val.getD a fallback = m.getD a fallback
theorem Std.DHashMap.Internal.Raw.get!_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {m : Raw α β} (h : m.WF) {a : α} [Inhabited (β a)] :
m.get! a = Raw₀.get! m, a
theorem Std.DHashMap.Internal.Raw.get!_val {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {m : Raw₀ α β} {a : α} [Inhabited (β a)] :
m.val.get! a = m.get! a
theorem Std.DHashMap.Internal.Raw.getKey?_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw α β} (h : m.WF) {a : α} :
m.getKey? a = Raw₀.getKey? m, a
theorem Std.DHashMap.Internal.Raw.getKey?_val {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw₀ α β} {a : α} :
theorem Std.DHashMap.Internal.Raw.getKey_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw α β} {a : α} {h : a m} :
m.getKey a h = Raw₀.getKey m, a
theorem Std.DHashMap.Internal.Raw.getKey_val {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw₀ α β} {a : α} {h : a m.val} :
m.val.getKey a h = m.getKey a
theorem Std.DHashMap.Internal.Raw.getKeyD_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw α β} (h : m.WF) {a fallback : α} :
m.getKeyD a fallback = Raw₀.getKeyD m, a fallback
theorem Std.DHashMap.Internal.Raw.getKeyD_val {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw₀ α β} {a fallback : α} :
m.val.getKeyD a fallback = m.getKeyD a fallback
theorem Std.DHashMap.Internal.Raw.getKey!_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] [Inhabited α] {m : Raw α β} (h : m.WF) {a : α} :
m.getKey! a = Raw₀.getKey! m, a
theorem Std.DHashMap.Internal.Raw.getKey!_val {α : Type u} {β : αType v} [BEq α] [Hashable α] [Inhabited α] {m : Raw₀ α β} {a : α} :
theorem Std.DHashMap.Internal.Raw.erase_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw α β} (h : m.WF) {a : α} :
m.erase a = (Raw₀.erase m, a).val
theorem Std.DHashMap.Internal.Raw.erase_val {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw₀ α β} {a : α} :
m.val.erase a = (m.erase a).val
theorem Std.DHashMap.Internal.Raw.filterMap_eq {α : Type u} {β : αType v} {δ : αType w} [BEq α] [Hashable α] {m : Raw α β} (h : m.WF) {f : (a : α) → β aOption (δ a)} :
Raw.filterMap f m = (Raw₀.filterMap f m, ).val
theorem Std.DHashMap.Internal.Raw.filterMap_val {α : Type u} {β : αType v} {δ : αType w} [BEq α] [Hashable α] {m : Raw₀ α β} {f : (a : α) → β aOption (δ a)} :
theorem Std.DHashMap.Internal.Raw.map_eq {α : Type u} {β : αType v} {δ : αType w} [BEq α] [Hashable α] {m : Raw α β} (h : m.WF) {f : (a : α) → β aδ a} :
Raw.map f m = (Raw₀.map f m, ).val
theorem Std.DHashMap.Internal.Raw.map_val {α : Type u} {β : αType v} {δ : αType w} [BEq α] [Hashable α] {m : Raw₀ α β} {f : (a : α) → β aδ a} :
theorem Std.DHashMap.Internal.Raw.filter_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw α β} (h : m.WF) {f : (a : α) → β aBool} :
Raw.filter f m = (Raw₀.filter f m, ).val
theorem Std.DHashMap.Internal.Raw.filter_val {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw₀ α β} {f : (a : α) → β aBool} :
theorem Std.DHashMap.Internal.Raw.insertMany_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw α β} (h : m.WF) {ρ : Type w} [ForIn Id ρ ((a : α) × β a)] {l : ρ} :
m.insertMany l = (Raw₀.insertMany m, l).val.val
theorem Std.DHashMap.Internal.Raw.insertMany_val {α : Type u} {β : αType v} [BEq α] [Hashable α] {m : Raw₀ α β} {ρ : Type w} [ForIn Id ρ ((a : α) × β a)] {l : ρ} :
theorem Std.DHashMap.Internal.Raw.ofList_eq {α : Type u} {β : αType v} [BEq α] [Hashable α] {l : List ((a : α) × β a)} :
theorem Std.DHashMap.Internal.Raw.alter_eq {α : Type u} {β : αType v} [BEq α] [LawfulBEq α] [Hashable α] {m : Raw α β} (h : m.WF) {k : α} {f : Option (β k)Option (β k)} :
m.alter k f = (Raw₀.alter m, k f).val
theorem Std.DHashMap.Internal.Raw.modify_eq {α : Type u} {β : αType v} [BEq α] [LawfulBEq α] [Hashable α] {m : Raw α β} (h : m.WF) {k : α} {f : β kβ k} :
m.modify k f = (Raw₀.modify m, k f).val
theorem Std.DHashMap.Internal.Raw.Const.insertMany_eq {α : Type u} {β : Type v} [BEq α] [Hashable α] {m : Raw α fun (x : α) => β} (h : m.WF) {ρ : Type w} [ForIn Id ρ (α × β)] {l : ρ} :
theorem Std.DHashMap.Internal.Raw.Const.insertMany_val {α : Type u} {β : Type v} [BEq α] [Hashable α] {m : Raw₀ α fun (x : α) => β} {ρ : Type w} [ForIn Id ρ (α × β)] {l : ρ} :
theorem Std.DHashMap.Internal.Raw.Const.insertManyIfNewUnit_eq {α : Type u} {ρ : Type w} [ForIn Id ρ α] [BEq α] [Hashable α] {m : Raw α fun (x : α) => Unit} {l : ρ} (h : m.WF) :
theorem Std.DHashMap.Internal.Raw.Const.get?_eq {α : Type u} {β : Type v} [BEq α] [Hashable α] {m : Raw α fun (x : α) => β} (h : m.WF) {a : α} :
theorem Std.DHashMap.Internal.Raw.Const.get?_val {α : Type u} {β : Type v} [BEq α] [Hashable α] {m : Raw₀ α fun (x : α) => β} {a : α} :
theorem Std.DHashMap.Internal.Raw.Const.get_eq {α : Type u} {β : Type v} [BEq α] [Hashable α] {m : Raw α fun (x : α) => β} {a : α} {h : a m} :
Raw.Const.get m a h = Raw₀.Const.get m, a
theorem Std.DHashMap.Internal.Raw.Const.get_val {α : Type u} {β : Type v} [BEq α] [Hashable α] {m : Raw₀ α fun (x : α) => β} {a : α} {h : a m.val} :
theorem Std.DHashMap.Internal.Raw.Const.getD_eq {α : Type u} {β : Type v} [BEq α] [Hashable α] {m : Raw α fun (x : α) => β} (h : m.WF) {a : α} {fallback : β} :
Raw.Const.getD m a fallback = Raw₀.Const.getD m, a fallback
theorem Std.DHashMap.Internal.Raw.Const.getD_val {α : Type u} {β : Type v} [BEq α] [Hashable α] {m : Raw₀ α fun (x : α) => β} {a : α} {fallback : β} :
Raw.Const.getD m.val a fallback = Raw₀.Const.getD m a fallback
theorem Std.DHashMap.Internal.Raw.Const.get!_eq {α : Type u} {β : Type v} [BEq α] [Hashable α] [Inhabited β] {m : Raw α fun (x : α) => β} (h : m.WF) {a : α} :
theorem Std.DHashMap.Internal.Raw.Const.get!_val {α : Type u} {β : Type v} [BEq α] [Hashable α] [Inhabited β] {m : Raw₀ α fun (x : α) => β} {a : α} :
theorem Std.DHashMap.Internal.Raw.Const.getThenInsertIfNew?_snd_eq {α : Type u} {β : Type v} [BEq α] [Hashable α] {m : Raw α fun (x : α) => β} (h : m.WF) {a : α} {b : β} :
theorem Std.DHashMap.Internal.Raw.Const.getThenInsertIfNew?_snd_val {α : Type u} {β : Type v} [BEq α] [Hashable α] {m : Raw₀ α fun (x : α) => β} {a : α} {b : β} :
theorem Std.DHashMap.Internal.Raw.Const.getThenInsertIfNew?_fst_eq {α : Type u} {β : Type v} [BEq α] [Hashable α] {m : Raw α fun (x : α) => β} (h : m.WF) {a : α} {b : β} :
theorem Std.DHashMap.Internal.Raw.Const.getThenInsertIfNew?_fst_val {α : Type u} {β : Type v} [BEq α] [Hashable α] {m : Raw₀ α fun (x : α) => β} {a : α} {b : β} :
theorem Std.DHashMap.Internal.Raw.Const.alter_eq {α : Type u} {β : Type v} [BEq α] [EquivBEq α] [Hashable α] {m : Raw α fun (x : α) => β} (h : m.WF) {k : α} {f : Option βOption β} :
Raw.Const.alter m k f = (Raw₀.Const.alter m, k f).val
theorem Std.DHashMap.Internal.Raw.Const.modify_eq {α : Type u} {β : Type v} [BEq α] [EquivBEq α] [Hashable α] {m : Raw α fun (x : α) => β} (h : m.WF) {k : α} {f : ββ} :
Raw.Const.modify m k f = (Raw₀.Const.modify m, k f).val