Documentation

Std.Sat.AIG.Basic

This module contains the basic definitions for an AIG (And Inverter Graph) in the style of AIGNET, as described in https://arxiv.org/pdf/1304.7861.pdf section 3. It consists of an AIG definition, a description of its semantics and basic operations to construct nodes in the AIG.

inductive Std.Sat.AIG.Decl (α : Type) :

A circuit node. These are not recursive but instead contain indices into an AIG, with inputs indexed by α.

  • const {α : Type} (b : Bool) : Decl α

    A node with a constant output value.

  • atom {α : Type} (idx : α) : Decl α

    An input node to the circuit.

  • gate {α : Type} (l r : Nat) (linv rinv : Bool) : Decl α

    An AIG gate with configurable input nodes and polarity. l and r are the input node indices while linv and rinv say whether there is an inverter on the left and right inputs, respectively.

Instances For
    instance Std.Sat.AIG.instReprDecl {α✝ : Type} [Repr α✝] :
    Repr (Decl α✝)
    Equations
    inductive Std.Sat.AIG.Cache.WF {α : Type} [Hashable α] [DecidableEq α] :
    Array (Decl α)HashMap (Decl α) NatProp

    Cache.WF xs is a predicate asserting that a cache : HashMap (Decl α) Nat is a valid lookup cache for xs : Array (Decl α), that is, whenever cache.find? decl returns an index into xs : Array Decl, xs[index] = decl. Note that this predicate does not force the cache to be complete, if there is no entry in the cache for some node, it can still exist in the AIG.

    Instances For
      def Std.Sat.AIG.Cache (α : Type) [DecidableEq α] [Hashable α] (decls : Array (Decl α)) :

      A cache for reusing elements from decls if they are available.

      Equations
      Instances For
        @[irreducible, inline]
        def Std.Sat.AIG.Cache.empty {α : Type} [Hashable α] [DecidableEq α] (decls : Array (Decl α)) :
        Cache α decls

        Create an empty Cache, valid with respect to any Array Decl.

        Equations
        Instances For
          @[irreducible, inline]
          def Std.Sat.AIG.Cache.noUpdate {α : Type} [Hashable α] [DecidableEq α] {decls : Array (Decl α)} {decl : Decl α} (cache : Cache α decls) :
          Cache α (decls.push decl)

          Given a cache, valid with respect to some decls, we can extend the decls without extending the cache and remain valid.

          Equations
          Instances For
            @[irreducible, inline]
            def Std.Sat.AIG.Cache.insert {α : Type} [Hashable α] [DecidableEq α] (decls : Array (Decl α)) (cache : Cache α decls) (decl : Decl α) :
            Cache α (decls.push decl)

            Given a cache, valid with respect to some decls, we can extend the decls and the cache at the same time with the same values and remain valid.

            Equations
            Instances For
              structure Std.Sat.AIG.CacheHit {α : Type} (decls : Array (Decl α)) (decl : Decl α) :

              Contains the index of decl in decls along with a proof that the index is indeed correct.

              Instances For
                theorem Std.Sat.AIG.Cache.get?_bounds {α : Type} [Hashable α] [DecidableEq α] {decls : Array (Decl α)} {idx : Nat} (c : Cache α decls) (decl : Decl α) (hfound : c.val[decl]? = some idx) :
                idx < decls.size

                For a c : Cache α decls, any index idx that is a cache hit for some decl is within bounds of decls (i.e. idx < decls.size).

                theorem Std.Sat.AIG.Cache.get?_property {α : Type} [Hashable α] [DecidableEq α] {decls : Array (Decl α)} {idx : Nat} (c : Cache α decls) (decl : Decl α) (hfound : c.val[decl]? = some idx) :
                decls[idx] = decl

                If Cache.get? decl returns some i then decls[i] = decl holds.

                @[irreducible, inline]
                def Std.Sat.AIG.Cache.get? {α : Type} [Hashable α] [DecidableEq α] {decls : Array (Decl α)} (cache : Cache α decls) (decl : Decl α) :
                Option (CacheHit decls decl)

                Lookup a Decl in a Cache.

                Equations
                Instances For
                  def Std.Sat.AIG.IsDAG (α : Type) (decls : Array (Decl α)) :

                  An Array Decl is a Direct Acyclic Graph (DAG) if a gate at index i only points to nodes with index lower than i.

                  Equations
                  Instances For

                    The empty array is a DAG.

                    structure Std.Sat.AIG (α : Type) [DecidableEq α] [Hashable α] :

                    An And Inverter Graph together with a cache for subterm sharing.

                    Instances For
                      def Std.Sat.AIG.empty {α : Type} [Hashable α] [DecidableEq α] :
                      AIG α

                      An AIG with an empty AIG and cache.

                      Equations
                      Instances For
                        def Std.Sat.AIG.Mem {α : Type} [Hashable α] [DecidableEq α] (aig : AIG α) (a : α) :

                        The atom a occurs in aig.

                        Equations
                        Instances For
                          structure Std.Sat.AIG.Ref {α : Type} [Hashable α] [DecidableEq α] (aig : AIG α) :

                          A reference to a node within an AIG. This is the AIG analog of Bool.

                          Instances For
                            @[inline]
                            def Std.Sat.AIG.Ref.cast {α : Type} [Hashable α] [DecidableEq α] {aig1 aig2 : AIG α} (ref : aig1.Ref) (h : aig1.decls.size aig2.decls.size) :
                            aig2.Ref

                            A Ref into aig1 is also valid for aig2 if aig1 is smaller than aig2.

                            Equations
                            • ref.cast h = { gate := ref.gate, hgate := }
                            Instances For
                              structure Std.Sat.AIG.BinaryInput {α : Type} [Hashable α] [DecidableEq α] (aig : AIG α) :

                              A pair of Refs, useful for LawfulOperators that act on two Refs at a time.

                              Instances For
                                @[inline]
                                def Std.Sat.AIG.BinaryInput.cast {α : Type} [Hashable α] [DecidableEq α] {aig1 aig2 : AIG α} (input : aig1.BinaryInput) (h : aig1.decls.size aig2.decls.size) :

                                The Ref.cast equivalent for BinaryInput.

                                Equations
                                Instances For
                                  structure Std.Sat.AIG.TernaryInput {α : Type} [Hashable α] [DecidableEq α] (aig : AIG α) :

                                  A collection of 3 of Refs, useful for LawfulOperators that act on three Refs at a time, in particular multiplexer style functions.

                                  Instances For
                                    @[inline]
                                    def Std.Sat.AIG.TernaryInput.cast {α : Type} [Hashable α] [DecidableEq α] {aig1 aig2 : AIG α} (input : aig1.TernaryInput) (h : aig1.decls.size aig2.decls.size) :

                                    The Ref.cast equivalent for TernaryInput.

                                    Equations
                                    Instances For

                                      An entrypoint into an AIG. This can be used to evaluate a circuit, starting at a certain node, with AIG.denote or to construct bigger circuits on top of this specific node.

                                      • aig : AIG α

                                        The AIG that we are in.

                                      • ref : self.aig.Ref

                                        The reference to the node in aig that this Entrypoint targets.

                                      Instances For
                                        def Std.Sat.AIG.toGraphviz {α : Type} [DecidableEq α] [ToString α] [Hashable α] (entry : Entrypoint α) :

                                        Transform an Entrypoint into a graphviz string. Useful for debugging purposes.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          @[irreducible]
                                          def Std.Sat.AIG.toGraphviz.go {α : Type} [DecidableEq α] [ToString α] [Hashable α] (acc : String) (decls : Array (Decl α)) (hinv : IsDAG α decls) (idx : Nat) (hidx : idx < decls.size) :
                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            Equations
                                            Instances For
                                              def Std.Sat.AIG.toGraphviz.toGraphvizString {α : Type} [DecidableEq α] [ToString α] [Hashable α] (decls : Array (Decl α)) (idx : Fin decls.size) :
                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For
                                                structure Std.Sat.AIG.RefVec {α : Type} [Hashable α] [DecidableEq α] (aig : AIG α) (w : Nat) :

                                                A vector of references into aig. This is the AIG analog of BitVec.

                                                Instances For
                                                  structure Std.Sat.AIG.RefVecEntry (α : Type) [DecidableEq α] [Hashable α] [DecidableEq α] (w : Nat) :

                                                  A sequence of references bundled with their AIG.

                                                  Instances For
                                                    structure Std.Sat.AIG.ShiftTarget {α : Type} [Hashable α] [DecidableEq α] (aig : AIG α) (w : Nat) :

                                                    A RefVec bundled with constant distance to be shifted by.

                                                    Instances For
                                                      structure Std.Sat.AIG.ArbitraryShiftTarget {α : Type} [Hashable α] [DecidableEq α] (aig : AIG α) (m : Nat) :

                                                      A RefVec bundled with a RefVec as distance to be shifted by.

                                                      Instances For
                                                        structure Std.Sat.AIG.ExtendTarget {α : Type} [Hashable α] [DecidableEq α] (aig : AIG α) (newWidth : Nat) :

                                                        A RefVec to be extended to newWidth.

                                                        Instances For
                                                          def Std.Sat.AIG.denote {α : Type} [Hashable α] [DecidableEq α] (assign : αBool) (entry : Entrypoint α) :

                                                          Evaluate an AIG.Entrypoint using some assignment for atoms.

                                                          Equations
                                                          Instances For
                                                            @[irreducible]
                                                            def Std.Sat.AIG.denote.go {α : Type} (x : Nat) (decls : Array (Decl α)) (assign : αBool) (h1 : x < decls.size) (h2 : IsDAG α decls) :
                                                            Equations
                                                            • One or more equations did not get rendered due to their size.
                                                            Instances For

                                                              Denotation of an AIG at a specific Entrypoint.

                                                              Equations
                                                              • One or more equations did not get rendered due to their size.
                                                              Instances For

                                                                Denotation of an AIG at a specific Entrypoint with the Entrypoint being constructed on the fly.

                                                                Equations
                                                                • One or more equations did not get rendered due to their size.
                                                                Instances For
                                                                  Equations
                                                                  • One or more equations did not get rendered due to their size.
                                                                  Instances For
                                                                    def Std.Sat.AIG.UnsatAt {α : Type} [Hashable α] [DecidableEq α] (aig : AIG α) (start : Nat) (h : start < aig.decls.size) :

                                                                    The denotation of the sub-DAG in the aig at node start is false for all assignments.

                                                                    Equations
                                                                    Instances For

                                                                      The denotation of the Entrypoint is false for all assignments.

                                                                      Equations
                                                                      Instances For
                                                                        structure Std.Sat.AIG.Fanin {α : Type} [Hashable α] [DecidableEq α] (aig : AIG α) :

                                                                        An input to an AIG gate.

                                                                        • ref : aig.Ref

                                                                          The node we are referring to.

                                                                        • inv : Bool

                                                                          Whether the node is inverted

                                                                        Instances For
                                                                          @[inline]
                                                                          def Std.Sat.AIG.Fanin.cast {α : Type} [Hashable α] [DecidableEq α] {aig1 aig2 : AIG α} (fanin : aig1.Fanin) (h : aig1.decls.size aig2.decls.size) :
                                                                          aig2.Fanin

                                                                          The Ref.cast equivalent for Fanin.

                                                                          Equations
                                                                          Instances For
                                                                            structure Std.Sat.AIG.GateInput {α : Type} [Hashable α] [DecidableEq α] (aig : AIG α) :

                                                                            The input type for creating AIG and gates.

                                                                            Instances For
                                                                              @[inline]
                                                                              def Std.Sat.AIG.GateInput.cast {α : Type} [Hashable α] [DecidableEq α] {aig1 aig2 : AIG α} (input : aig1.GateInput) (h : aig1.decls.size aig2.decls.size) :

                                                                              The Ref.cast equivalent for GateInput.

                                                                              Equations
                                                                              Instances For
                                                                                def Std.Sat.AIG.mkGate {α : Type} [Hashable α] [DecidableEq α] (aig : AIG α) (input : aig.GateInput) :

                                                                                Add a new and inverter gate to the AIG in aig. Note that this version is only meant for proving, for production purposes use AIG.mkGateCached and equality theorems to this one.

                                                                                Equations
                                                                                • One or more equations did not get rendered due to their size.
                                                                                Instances For
                                                                                  def Std.Sat.AIG.mkAtom {α : Type} [Hashable α] [DecidableEq α] (aig : AIG α) (n : α) :

                                                                                  Add a new input node to the AIG in aig. Note that this version is only meant for proving, for production purposes use AIG.mkAtomCached and equality theorems to this one.

                                                                                  Equations
                                                                                  Instances For
                                                                                    def Std.Sat.AIG.mkConst {α : Type} [Hashable α] [DecidableEq α] (aig : AIG α) (val : Bool) :

                                                                                    Add a new constant node to aig. Note that this version is only meant for proving, for production purposes use AIG.mkConstCached and equality theorems to this one.

                                                                                    Equations
                                                                                    Instances For
                                                                                      def Std.Sat.AIG.isConstant {α : Type} [Hashable α] [DecidableEq α] (aig : AIG α) (ref : aig.Ref) (b : Bool) :

                                                                                      Determine whether ref is a Decl.const with value b.

                                                                                      Equations
                                                                                      Instances For