Documentation

Std.Tactic.BVDecide.LRAT.Internal.CNF

theorem Std.Tactic.BVDecide.LRAT.Internal.Literal.sat_iff {α : Type u_1} (p : αBool) (a : α) (b : Bool) :
Entails.eval p (a, b) p a = b
theorem Std.Tactic.BVDecide.LRAT.Internal.Literal.unsat_of_limplies_complement {α : Type u_1} {t : Type u_2} [Entails α t] (x : t) (l : Sat.Literal α) :
Limplies α x lLimplies α x l.negateUnsatisfiable α x
theorem Std.Tactic.BVDecide.LRAT.Internal.Clause.sat_iff_exists {α : Type u_1} {β : Type u_2} [Clause α β] (p : αBool) (c : β) :
theorem Std.Tactic.BVDecide.LRAT.Internal.Clause.limplies_iff_mem {α : Type u_1} {β : Type u_2} [DecidableEq α] [Clause α β] (l : Sat.Literal α) (c : β) :
Limplies α l c l toList c
theorem Std.Tactic.BVDecide.LRAT.Internal.Clause.entails_of_entails_delete {α : Type u_1} {β : Type u_2} [DecidableEq α] [Clause α β] {p : αBool} {c : β} {l : Sat.Literal α} :
theorem Std.Tactic.BVDecide.LRAT.Internal.Formula.sat_iff_forall {α : Type u_1} {β : Type u_2} {σ : Type u_3} [Clause α β] [Entails α σ] [Formula α β σ] (p : αBool) (f : σ) :
Entails.eval p f ∀ (c : β), c toList fEntails.eval p c
theorem Std.Tactic.BVDecide.LRAT.Internal.Formula.limplies_insert {α : Type u_1} {β : Type u_2} {σ : Type u_3} [Clause α β] [Entails α σ] [Formula α β σ] {c : β} {f : σ} :
Limplies α (insert f c) f
theorem Std.Tactic.BVDecide.LRAT.Internal.Formula.limplies_delete {α : Type u_1} {β : Type u_2} {σ : Type u_3} [Clause α β] [Entails α σ] [Formula α β σ] {f : σ} {arr : Array Nat} :
Limplies α f (delete f arr)