theorem
Lean.Grind.Ring.OfSemiring.instAssociativeHAdd
(α : Type u)
[Semiring α]
:
Std.Associative fun (x1 x2 : α) => x1 + x2
theorem
Lean.Grind.Ring.OfSemiring.instCommutativeHAdd
(α : Type u)
[Semiring α]
:
Std.Commutative fun (x1 x2 : α) => x1 + x2
theorem
Lean.Grind.Ring.OfSemiring.instAssociativeHMul
(α : Type u)
[Semiring α]
:
Std.Associative fun (x1 x2 : α) => x1 * x2
Equations
Instances For
Equations
Instances For
Equations
Instances For
Equations
- Lean.Grind.Ring.OfSemiring.neg q = Quot.liftOn q (fun (x : α × α) => match x with | (a, b) => Lean.Grind.Ring.OfSemiring.Q.mk (b, a)) ⋯
Instances For
Equations
Instances For
Embedding theorems
Helper definitions and theorems for proving toQ
is injective when
CommSemiring
has the right_cancel property
instance
Lean.Grind.Ring.OfSemiring.instNoNatZeroDivisorsQOfAddRightCancel
{α : Type u}
[Semiring α]
[AddRightCancel α]
[NoNatZeroDivisors α]
:
NoNatZeroDivisors (Q α)
instance
Lean.Grind.Ring.OfSemiring.instIsCharPQOfAddRightCancel
{α : Type u}
{p : Nat}
[Semiring α]
[AddRightCancel α]
[IsCharP α p]
:
instance
Lean.Grind.Ring.OfSemiring.instLEQOfOrderedAdd
{α : Type u}
[Semiring α]
[Preorder α]
[OrderedAdd α]
:
Equations
- One or more equations did not get rendered due to their size.
instance
Lean.Grind.Ring.OfSemiring.instPreorderQOfOrderedAdd
{α : Type u}
[Semiring α]
[Preorder α]
[OrderedAdd α]
:
Equations
- One or more equations did not get rendered due to their size.
instance
Lean.Grind.Ring.OfSemiring.instOrderedAddQ
{α : Type u}
[Semiring α]
[Preorder α]
[OrderedAdd α]
:
OrderedAdd (Q α)
instance
Lean.Grind.Ring.OfSemiring.instOrderedRingQOfExistsAddOfLT
{α : Type u}
[Semiring α]
[Preorder α]
[OrderedRing α]
[ExistsAddOfLT α]
:
OrderedRing (Q α)
theorem
Lean.Grind.CommRing.OfCommSemiring.instAssociativeHAdd
(α : Type u)
[CommSemiring α]
:
Std.Associative fun (x1 x2 : α) => x1 + x2
theorem
Lean.Grind.CommRing.OfCommSemiring.instCommutativeHAdd
(α : Type u)
[CommSemiring α]
:
Std.Commutative fun (x1 x2 : α) => x1 + x2
theorem
Lean.Grind.CommRing.OfCommSemiring.instAssociativeHMul
(α : Type u)
[CommSemiring α]
:
Std.Associative fun (x1 x2 : α) => x1 * x2
theorem
Lean.Grind.CommRing.OfCommSemiring.instCommutativeHMul
(α : Type u)
[CommSemiring α]
:
Std.Commutative fun (x1 x2 : α) => x1 * x2
theorem
Lean.Grind.CommRing.OfCommSemiring.mul_comm
{α : Type u}
[CommSemiring α]
(a b : Ring.OfSemiring.Q α)
:
Equations
- Lean.Grind.CommRing.OfCommSemiring.ofCommSemiring = { toRing := Lean.Grind.Ring.OfSemiring.ofSemiring, mul_comm := ⋯ }
Equations
- One or more equations did not get rendered due to their size.