Basic facts about real (semi)normed spaces #
In this file we prove some theorems about (semi)normed spaces over real numberes.
Main results #
- closure_ball,- frontier_ball,- interior_closedBall,- frontier_closedBall,- interior_sphere,- frontier_sphere: formulas for the closure/interior/frontier of nontrivial balls and spheres in a real seminormed space;
- interior_closedBall',- frontier_closedBall',- interior_sphere',- frontier_sphere': similar lemmas assuming that the ambient space is separated and nontrivial instead of- r ≠ 0.
instance
Real.punctured_nhds_module_neBot
{E : Type u_1}
[AddCommGroup E]
[TopologicalSpace E]
[ContinuousAdd E]
[Nontrivial E]
[Module ℝ E]
[ContinuousSMul ℝ E]
(x : E)
 :
(nhdsWithin x {x}ᶜ).NeBot
If E is a nontrivial topological module over ℝ, then E has no isolated points.
This is a particular case of Module.punctured_nhds_neBot.
theorem
inv_norm_smul_mem_unitClosedBall
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
(x : E)
 :
theorem
norm_smul_of_nonneg
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
{t : ℝ}
(ht : 0 ≤ t)
(x : E)
 :
theorem
closure_ball
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
(x : E)
{r : ℝ}
(hr : r ≠ 0)
 :
theorem
frontier_ball
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
(x : E)
{r : ℝ}
(hr : r ≠ 0)
 :
theorem
interior_closedBall
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
(x : E)
{r : ℝ}
(hr : r ≠ 0)
 :
theorem
frontier_closedBall
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
(x : E)
{r : ℝ}
(hr : r ≠ 0)
 :
theorem
interior_sphere
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
(x : E)
{r : ℝ}
(hr : r ≠ 0)
 :
theorem
frontier_sphere
{E : Type u_1}
[SeminormedAddCommGroup E]
[NormedSpace ℝ E]
(x : E)
{r : ℝ}
(hr : r ≠ 0)
 :
theorem
exists_norm_eq
(E : Type u_1)
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[Nontrivial E]
{c : ℝ}
(hc : 0 ≤ c)
 :
@[simp]
@[simp]
@[simp]
theorem
NormedSpace.sphere_nonempty
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[Nontrivial E]
{x : E}
{r : ℝ}
 :
In a nontrivial real normed space, a sphere is nonempty if and only if its radius is nonnegative.
theorem
interior_closedBall'
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[Nontrivial E]
(x : E)
(r : ℝ)
 :
theorem
frontier_closedBall'
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[Nontrivial E]
(x : E)
(r : ℝ)
 :
@[simp]
theorem
interior_sphere'
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[Nontrivial E]
(x : E)
(r : ℝ)
 :
@[simp]
theorem
frontier_sphere'
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[Nontrivial E]
(x : E)
(r : ℝ)
 :