Documentation

Mathlib.Data.Finset.SymmDiff

Symmetric difference of finite sets #

This file concerns the symmetric difference operator s Δ t on finite sets.

Tags #

finite sets, finset

Symmetric difference #

theorem Finset.mem_symmDiff {α : Type u_1} [DecidableEq α] {s t : Finset α} {a : α} :
a symmDiff s t a s at a t as
@[simp]
theorem Finset.coe_symmDiff {α : Type u_1} [DecidableEq α] {s t : Finset α} :
(symmDiff s t) = symmDiff s t
@[simp]
theorem Finset.symmDiff_eq_empty {α : Type u_1} [DecidableEq α] {s t : Finset α} :
symmDiff s t = s = t
@[simp]
theorem Finset.symmDiff_nonempty {α : Type u_1} [DecidableEq α] {s t : Finset α} :
theorem Finset.image_symmDiff {α : Type u_1} {β : Type u_2} [DecidableEq α] [DecidableEq β] {f : αβ} (s t : Finset α) (hf : Function.Injective f) :
image f (symmDiff s t) = symmDiff (image f s) (image f t)
theorem Finset.symmDiff_subset_sdiff {α : Type u_1} [DecidableEq α] {s t : Finset α} :
s \ t symmDiff s t

See symmDiff_subset_sdiff' for the swapped version of this.

theorem Finset.symmDiff_subset_sdiff' {α : Type u_1} [DecidableEq α] {s t : Finset α} :
t \ s symmDiff s t

See symmDiff_subset_sdiff for the swapped version of this.

theorem Finset.symmDiff_subset_union {α : Type u_1} [DecidableEq α] {s t : Finset α} :
symmDiff s t s t
theorem Finset.symmDiff_eq_union_iff {α : Type u_1} [DecidableEq α] (s t : Finset α) :
symmDiff s t = s t Disjoint s t
theorem Finset.symmDiff_eq_union {α : Type u_1} [DecidableEq α] {s t : Finset α} (h : Disjoint s t) :
symmDiff s t = s t