theorem
Commute.ofNat_left
{α : Type u_1}
[NonAssocSemiring α]
(n : ℕ)
[n.AtLeastTwo]
(x : α)
 :
Commute (OfNat.ofNat n) x
theorem
Commute.ofNat_right
{α : Type u_1}
[NonAssocSemiring α]
(x : α)
(n : ℕ)
[n.AtLeastTwo]
 :
Commute x (OfNat.ofNat n)
@[simp]
theorem
SemiconjBy.natCast_mul_right
{α : Type u_1}
[Semiring α]
{a x y : α}
(h : SemiconjBy a x y)
(n : ℕ)
 :
SemiconjBy a (↑n * x) (↑n * y)
@[simp]
theorem
SemiconjBy.natCast_mul_left
{α : Type u_1}
[Semiring α]
{a x y : α}
(h : SemiconjBy a x y)
(n : ℕ)
 :
SemiconjBy (↑n * a) x y
theorem
SemiconjBy.natCast_mul_natCast_mul
{α : Type u_1}
[Semiring α]
{a x y : α}
(h : SemiconjBy a x y)
(m n : ℕ)
 :
SemiconjBy (↑m * a) (↑n * x) (↑n * y)