The group GL (Fin 2) R #
@[simp]
theorem
Matrix.isParabolic_conj_iff
{R : Type u_1}
[CommRing R]
[Nontrivial R]
{m : Matrix (Fin 2) (Fin 2) R}
(g : GL (Fin 2) R)
:
@[simp]
theorem
Matrix.isParabolic_conj'_iff
{R : Type u_1}
[CommRing R]
[Nontrivial R]
{m : Matrix (Fin 2) (Fin 2) R}
(g : GL (Fin 2) R)
:
theorem
Matrix.isParabolic_iff_of_upperTriangular
{R : Type u_1}
[CommRing R]
[Nontrivial R]
{m : Matrix (Fin 2) (Fin 2) R}
[IsReduced R]
(hm : m 1 0 = 0)
:
theorem
Matrix.IsParabolic.sub_eigenvalue_sq_eq_zero
{K : Type u_1}
[Field K]
{m : Matrix (Fin 2) (Fin 2) K}
[NeZero 2]
(hm : m.IsParabolic)
:
theorem
Matrix.isHyperbolic_conj_iff
{R : Type u_1}
[CommRing R]
[Nontrivial R]
[Preorder R]
{m : Matrix (Fin 2) (Fin 2) R}
(g : GL (Fin 2) R)
:
theorem
Matrix.isHyperbolic_conj'_iff
{R : Type u_1}
[CommRing R]
[Nontrivial R]
[Preorder R]
{m : Matrix (Fin 2) (Fin 2) R}
(g : GL (Fin 2) R)
:
theorem
Matrix.isElliptic_conj_iff
{R : Type u_1}
[CommRing R]
[Nontrivial R]
[Preorder R]
{m : Matrix (Fin 2) (Fin 2) R}
(g : GL (Fin 2) R)
:
theorem
Matrix.isElliptic_conj'_iff
{R : Type u_1}
[CommRing R]
[Nontrivial R]
[Preorder R]
{m : Matrix (Fin 2) (Fin 2) R}
(g : GL (Fin 2) R)
:
@[simp]
@[reducible, inline]
Synonym of Matrix.IsParabolic, for dot-notation.
Equations
- g.IsParabolic = (↑g).IsParabolic
Instances For
@[simp]
theorem
Matrix.GeneralLinearGroup.isParabolic_conj_iff
{R : Type u_1}
[CommRing R]
[Nontrivial R]
(g h : GL (Fin 2) R)
:
@[simp]
theorem
Matrix.GeneralLinearGroup.isParabolic_conj_iff'
{R : Type u_1}
[CommRing R]
[Nontrivial R]
(g h : GL (Fin 2) R)
:
@[reducible, inline]
abbrev
Matrix.GeneralLinearGroup.IsElliptic
{R : Type u_1}
[CommRing R]
[Preorder R]
(g : GL (Fin 2) R)
:
Synonym of Matrix.IsElliptic, for dot-notation.
Equations
- g.IsElliptic = (↑g).IsElliptic
Instances For
@[reducible, inline]
abbrev
Matrix.GeneralLinearGroup.IsHyperbolic
{R : Type u_1}
[CommRing R]
[Preorder R]
(g : GL (Fin 2) R)
:
Synonym of Matrix.IsHyperbolic, for dot-notation.
Equations
- g.IsHyperbolic = (↑g).IsHyperbolic
Instances For
noncomputable def
Matrix.GeneralLinearGroup.fixpointPolynomial
{R : Type u_1}
[CommRing R]
(g : GL (Fin 2) R)
:
Polynomial whose roots are the fixed points of g considered as a Möbius transformation.
See Matrix.GeneralLinearGroup.fixpointPolynomial_aeval_eq_zero_iff.
Equations
- g.fixpointPolynomial = Polynomial.C (↑g 1 0) * Polynomial.X ^ 2 + Polynomial.C (↑g 1 1 - ↑g 0 0) * Polynomial.X - Polynomial.C (↑g 0 1)
Instances For
theorem
Matrix.GeneralLinearGroup.parabolicEigenvalue_ne_zero
{K : Type u_2}
[Field K]
{g : GL (Fin 2) K}
[NeZero 2]
(hg : g.IsParabolic)
:
theorem
Matrix.GeneralLinearGroup.IsParabolic.pow
{K : Type u_2}
[Field K]
{g : GL (Fin 2) K}
(hg : g.IsParabolic)
[CharZero K]
{n : ℕ}
(hn : n ≠ 0)
:
(g ^ n).IsParabolic
A non-zero power of a parabolic element is parabolic.
theorem
Matrix.GeneralLinearGroup.isParabolic_iff_of_upperTriangular_of_det
{K : Type u_2}
[Field K]
[LinearOrder K]
[IsStrictOrderedRing K]
{g : GL (Fin 2) K}
(h_det : det g = 1 ∨ det g = -1)
(hg10 : ↑g 1 0 = 0)
:
Specialized version of isParabolic_iff_of_upperTriangular intended for use with
discrete subgroups of GL(2, ℝ).