Documentation

SphereEversion.Global.OneJetBundle

1-jet bundles #

This file contains the definition of the 1-jet bundle J¹(M, M'), also known as OneJetBundle I M I' M'.

We also define

We prove

instance deleteme1 {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (x : M × M') :
Equations
instance deleteme2 {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (x : M × M') :
Equations
instance deleteme3 {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] :
instance deleteme4 {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] :
instance deleteme5 {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] :
instance deleteme6 {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] :
def OneJetSpace {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (p : M × M') :
Type (max u_5 u_2)

The fibers of the one jet-bundle.

Equations
Instances For
    instance instTopologicalSpaceOneJetSpace {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (p : M × M') :
    Equations
    instance instAddCommGroupOneJetSpace {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (p : M × M') :
    Equations
    instance instFunLikeOneJetSpaceTangentSpaceFstSnd {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (p : M × M') :
    FunLike (OneJetSpace I I' p) (TangentSpace I p.1) (TangentSpace I' p.2)
    Equations
    @[reducible]
    def OneJetBundle {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') (M' : Type u_7) [TopologicalSpace M'] [ChartedSpace H' M'] :
    Type (max (max u_4 u_7) u_2 u_5)

    The space of one jets of maps between two smooth manifolds. Defined in terms of Bundle.TotalSpace to be able to put a suitable topology on it.

    Equations
    Instances For
      theorem OneJetBundle.ext {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {x y : OneJetBundle I M I' M'} (h : x.proj.1 = y.proj.1) (h' : x.proj.2 = y.proj.2) (h'' : x.snd = y.snd) :
      x = y
      instance instModuleOneJetSpace {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') (M' : Type u_7) [TopologicalSpace M'] [ChartedSpace H' M'] (x : M × M') :
      Module 𝕜 (OneJetSpace I I' x)
      Equations
      instance instTopologicalSpaceOneJetBundle {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') (M' : Type u_7) [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] :
      Equations
      instance instFiberBundleProdContinuousLinearMapIdOneJetSpace {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') (M' : Type u_7) [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] :
      FiberBundle (E →L[𝕜] E') (OneJetSpace I I')
      Equations
      instance instVectorBundleProdContinuousLinearMapIdOneJetSpace {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') (M' : Type u_7) [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] :
      VectorBundle 𝕜 (E →L[𝕜] E') (OneJetSpace I I')
      instance instContMDiffVectorBundleSomeENatTopProdContinuousLinearMapIdOneJetSpaceModelProdProd {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') (M' : Type u_7) [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] :
      ContMDiffVectorBundle (↑) (E →L[𝕜] E') (OneJetSpace I I') (I.prod I')
      instance instIsManifoldProdContinuousLinearMapIdModelProdProdModelWithCornersSelfSomeENatTopOneJetBundle {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') (M' : Type u_7) [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] :
      IsManifold ((I.prod I').prod (modelWithCornersSelf 𝕜 (E →L[𝕜] E'))) (↑) (OneJetBundle I M I' M')
      theorem oneJetBundle_proj_continuous {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] :

      The tangent bundle projection on the basis is a continuous map.

      theorem oneJetBundle_trivializationAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] (x₀ x : OneJetBundle I M I' M') :
      ((trivializationAt (E →L[𝕜] E') (OneJetSpace I I') x₀.proj) x).2 = ContinuousLinearMap.inCoordinates E (TangentSpace I) E' (TangentSpace I') x₀.proj.1 x.proj.1 x₀.proj.2 x.proj.2 x.snd
      theorem trivializationAt_oneJetBundle_source {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] (x₀ : M × M') :
      theorem trivializationAt_oneJetBundle_target {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] (x₀ : M × M') :
      theorem oneJetBundle_chartAt_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] (v v' : OneJetBundle I M I' M') :
      (chartAt (ModelProd (ModelProd H H') (E →L[𝕜] E')) v) v' = (((chartAt H v.proj.1) v'.proj.1, (chartAt H' v.proj.2) v'.proj.2), ContinuousLinearMap.inCoordinates E (TangentSpace I) E' (TangentSpace I') v.proj.1 v'.proj.1 v.proj.2 v'.proj.2 v'.snd)

      Computing the value of a chart around v at point v' in J¹(M, M'). The last component equals the continuous linear map v'.2, composed on both sides by an appropriate coordinate change function.

      theorem oneJetBundle_chart_source {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] (x₀ : OneJetBundle I M I' M') :

      In J¹(M, M'), the source of a chart has a nice formula

      theorem trivializationAt_pullBack_baseSet {B : Type u} {F : Type v} {E : BType w₁} {B' : Type w₂} [TopologicalSpace B'] [TopologicalSpace (Bundle.TotalSpace F E)] [TopologicalSpace F] [TopologicalSpace B] [(_b : B) → Zero (E _b)] {K : Type U} [FunLike K B' B] [ContinuousMapClass K B' B] [(x : B) → TopologicalSpace (E x)] [FiberBundle F E] (f : K) (x : B') :
      (trivializationAt F (f *ᵖ E) x).baseSet = f ⁻¹' (trivializationAt F E (f x)).baseSet
      @[simp]
      theorem ContMDiffMap.coe_fst {𝕜 : Type u_23} [NontriviallyNormedField 𝕜] {E : Type u_24} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_25} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_26} [TopologicalSpace H] {H' : Type u_27} [TopologicalSpace H'] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_28} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_29} [TopologicalSpace M'] [ChartedSpace H' M'] {n : ℕ∞} :
      @[simp]
      theorem ContMDiffMap.coe_snd {𝕜 : Type u_23} [NontriviallyNormedField 𝕜] {E : Type u_24} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_25} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_26} [TopologicalSpace H] {H' : Type u_27} [TopologicalSpace H'] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_28} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_29} [TopologicalSpace M'] [ChartedSpace H' M'] {n : ℕ∞} :
      @[simp]
      theorem ContMDiffMap.fst_apply {𝕜 : Type u_23} [NontriviallyNormedField 𝕜] {E : Type u_24} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_25} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_26} [TopologicalSpace H] {H' : Type u_27} [TopologicalSpace H'] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_28} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_29} [TopologicalSpace M'] [ChartedSpace H' M'] {n : ℕ∞} (x : M) (x' : M') :
      fst (x, x') = x
      @[simp]
      theorem ContMDiffMap.snd_apply {𝕜 : Type u_23} [NontriviallyNormedField 𝕜] {E : Type u_24} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_25} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_26} [TopologicalSpace H] {H' : Type u_27} [TopologicalSpace H'] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_28} [TopologicalSpace M] [ChartedSpace H M] {M' : Type u_29} [TopologicalSpace M'] [ChartedSpace H' M'] {n : ℕ∞} (x : M) (x' : M') :
      snd (x, x') = x'
      theorem oneJetBundle_chart_target {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] (x₀ : OneJetBundle I M I' M') :
      (chartAt (ModelProd (ModelProd H H') (E →L[𝕜] E')) x₀).target = Prod.fst ⁻¹' (chartAt (ModelProd H H') x₀.proj).target

      In J¹(M, M'), the target of a chart has a nice formula

      theorem contMDiff_oneJetBundle_proj {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] :
      theorem ContMDiff.oneJetBundle_proj {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] {f : NOneJetBundle I M I' M'} (hf : ContMDiff J ((I.prod I').prod (modelWithCornersSelf 𝕜 (E →L[𝕜] E'))) (↑) f) :
      ContMDiff J (I.prod I') fun (x : N) => (f x).proj
      theorem ContMDiffAt.oneJetBundle_proj {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] {f : NOneJetBundle I M I' M'} {x₀ : N} (hf : ContMDiffAt J ((I.prod I').prod (modelWithCornersSelf 𝕜 (E →L[𝕜] E'))) (↑) f x₀) :
      ContMDiffAt J (I.prod I') (↑) (fun (x : N) => (f x).proj) x₀
      def OneJetBundle.mk {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (x : M) (y : M') (f : OneJetSpace I I' (x, y)) :
      OneJetBundle I M I' M'

      The constructor of OneJetBundle, in case Sigma.mk will not give the right type.

      Equations
      Instances For
        @[simp]
        theorem oneJetBundle_mk_fst {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {x : M} {y : M'} {f : OneJetSpace I I' (x, y)} :
        @[simp]
        theorem oneJetBundle_mk_snd {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {x : M} {y : M'} {f : OneJetSpace I I' (x, y)} :
        theorem contMDiffAt_oneJetBundle {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] {f : NOneJetBundle I M I' M'} {x₀ : N} :
        ContMDiffAt J ((I.prod I').prod (modelWithCornersSelf 𝕜 (E →L[𝕜] E'))) (↑) f x₀ ContMDiffAt J I (↑) (fun (x : N) => (f x).proj.1) x₀ ContMDiffAt J I' (↑) (fun (x : N) => (f x).proj.2) x₀ ContMDiffAt J (modelWithCornersSelf 𝕜 (E →L[𝕜] E')) (↑) (inTangentCoordinates I I' (fun (x : N) => (f x).proj.1) (fun (x : N) => (f x).proj.2) (fun (x : N) => (f x).snd) x₀) x₀
        theorem contMDiffAt_oneJetBundle_mk {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] {f : NM} {g : NM'} {ϕ : NE →L[𝕜] E'} {x₀ : N} :
        ContMDiffAt J ((I.prod I').prod (modelWithCornersSelf 𝕜 (E →L[𝕜] E'))) (↑) (fun (x : N) => OneJetBundle.mk (f x) (g x) (ϕ x)) x₀ ContMDiffAt J I (↑) f x₀ ContMDiffAt J I' (↑) g x₀ ContMDiffAt J (modelWithCornersSelf 𝕜 (E →L[𝕜] E')) (↑) (inTangentCoordinates I I' f g ϕ x₀) x₀
        theorem ContMDiffAt.oneJetBundle_mk {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] {f : NM} {g : NM'} {ϕ : NE →L[𝕜] E'} {x₀ : N} (hf : ContMDiffAt J I (↑) f x₀) (hg : ContMDiffAt J I' (↑) g x₀) ( : ContMDiffAt J (modelWithCornersSelf 𝕜 (E →L[𝕜] E')) (↑) (inTangentCoordinates I I' f g ϕ x₀) x₀) :
        ContMDiffAt J ((I.prod I').prod (modelWithCornersSelf 𝕜 (E →L[𝕜] E'))) (↑) (fun (x : N) => OneJetBundle.mk (f x) (g x) (ϕ x)) x₀
        def oneJetExt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : MM') :
        MOneJetBundle I M I' M'

        The one-jet extension of a function

        Equations
        Instances For
          theorem ContMDiffAt.oneJetExt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {f : MM'} {x : M} (hf : ContMDiffAt I I' (↑) f x) :
          ContMDiffAt I ((I.prod I').prod (modelWithCornersSelf 𝕜 (E →L[𝕜] E'))) (↑) (_root_.oneJetExt I I' f) x
          theorem ContMDiff.oneJetExt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {f : MM'} (hf : ContMDiff I I' (↑) f) :
          ContMDiff I ((I.prod I').prod (modelWithCornersSelf 𝕜 (E →L[𝕜] E'))) (↑) (_root_.oneJetExt I I' f)
          theorem ContinuousAt.inTangentCoordinates_comp {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {N : Type u_13} [TopologicalSpace N] {F' : Type u_14} [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] {G' : Type u_15} [TopologicalSpace G'] {J' : ModelWithCorners 𝕜 F' G'} {N' : Type u_16} [TopologicalSpace N'] [ChartedSpace G' N'] [IsManifold J' (↑) N'] {f : NM} {g : NM'} {h : NN'} {ϕ' : NE' →L[𝕜] F'} {ϕ : NE →L[𝕜] E'} {x₀ : N} (hg : ContinuousAt g x₀) :
          inTangentCoordinates I J' f h (fun (x : N) => (ϕ' x).comp (ϕ x)) x₀ =ᶠ[nhds x₀] fun (x : N) => (inTangentCoordinates I' J' g h ϕ' x₀ x).comp (inTangentCoordinates I I' f g ϕ x₀ x)
          theorem ContMDiffAt.clm_comp_inTangentCoordinates {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] {F' : Type u_14} [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] {G' : Type u_15} [TopologicalSpace G'] {J' : ModelWithCorners 𝕜 F' G'} {N' : Type u_16} [TopologicalSpace N'] [ChartedSpace G' N'] [IsManifold J' (↑) N'] {f : NM} {g : NM'} {h : NN'} {ϕ' : NE' →L[𝕜] F'} {ϕ : NE →L[𝕜] E'} {n : N} (hg : ContinuousAt g n) (hϕ' : ContMDiffAt J (modelWithCornersSelf 𝕜 (E' →L[𝕜] F')) (↑) (inTangentCoordinates I' J' g h ϕ' n) n) ( : ContMDiffAt J (modelWithCornersSelf 𝕜 (E →L[𝕜] E')) (↑) (inTangentCoordinates I I' f g ϕ n) n) :
          ContMDiffAt J (modelWithCornersSelf 𝕜 (E →L[𝕜] F')) (↑) (inTangentCoordinates I J' f h (fun (n : N) => (ϕ' n).comp (ϕ n)) n) n
          theorem ContMDiffAt.oneJet_comp {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] {F' : Type u_14} [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] {G' : Type u_15} [TopologicalSpace G'] {J' : ModelWithCorners 𝕜 F' G'} {N' : Type u_16} [TopologicalSpace N'] [ChartedSpace G' N'] [IsManifold J (↑) N] {f1 : N'M} (f2 : N'M') {f3 : N'N} {x₀ : N'} {h : (x : N') → OneJetSpace I' J (f2 x, f3 x)} {g : (x : N') → OneJetSpace I I' (f1 x, f2 x)} (hh : ContMDiffAt J' ((I'.prod J).prod (modelWithCornersSelf 𝕜 (E' →L[𝕜] F))) (↑) (fun (x : N') => OneJetBundle.mk (f2 x) (f3 x) (h x)) x₀) (hg : ContMDiffAt J' ((I.prod I').prod (modelWithCornersSelf 𝕜 (E →L[𝕜] E'))) (↑) (fun (x : N') => OneJetBundle.mk (f1 x) (f2 x) (g x)) x₀) :
          ContMDiffAt J' ((I.prod J).prod (modelWithCornersSelf 𝕜 (E →L[𝕜] F))) (↑) (fun (x : N') => OneJetBundle.mk (f1 x) (f3 x) (ContinuousLinearMap.comp (h x) (g x))) x₀
          theorem ContMDiff.oneJet_comp {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] {F' : Type u_14} [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] {G' : Type u_15} [TopologicalSpace G'] {J' : ModelWithCorners 𝕜 F' G'} {N' : Type u_16} [TopologicalSpace N'] [ChartedSpace G' N'] [IsManifold J (↑) N] {f1 : N'M} (f2 : N'M') {f3 : N'N} {h : (x : N') → OneJetSpace I' J (f2 x, f3 x)} {g : (x : N') → OneJetSpace I I' (f1 x, f2 x)} (hh : ContMDiff J' ((I'.prod J).prod (modelWithCornersSelf 𝕜 (E' →L[𝕜] F))) fun (x : N') => OneJetBundle.mk (f2 x) (f3 x) (h x)) (hg : ContMDiff J' ((I.prod I').prod (modelWithCornersSelf 𝕜 (E →L[𝕜] E'))) fun (x : N') => OneJetBundle.mk (f1 x) (f2 x) (g x)) :
          ContMDiff J' ((I.prod J).prod (modelWithCornersSelf 𝕜 (E →L[𝕜] F))) fun (x : N') => OneJetBundle.mk (f1 x) (f3 x) (ContinuousLinearMap.comp (h x) (g x))
          theorem ContMDiff.oneJet_add {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] {f : NM} {g : NM'} {ϕ ϕ' : (x : N) → OneJetSpace I I' (f x, g x)} ( : ContMDiff J ((I.prod I').prod (modelWithCornersSelf 𝕜 (E →L[𝕜] E'))) fun (x : N) => OneJetBundle.mk (f x) (g x) (ϕ x)) (hϕ' : ContMDiff J ((I.prod I').prod (modelWithCornersSelf 𝕜 (E →L[𝕜] E'))) fun (x : N) => OneJetBundle.mk (f x) (g x) (ϕ' x)) :
          ContMDiff J ((I.prod I').prod (modelWithCornersSelf 𝕜 (E →L[𝕜] E'))) fun (x : N) => OneJetBundle.mk (f x) (g x) (ϕ x + ϕ' x)
          def OneJetBundle.map {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] {F' : Type u_14} [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] {G' : Type u_15} [TopologicalSpace G'] (J' : ModelWithCorners 𝕜 F' G') {N' : Type u_16} [TopologicalSpace N'] [ChartedSpace G' N'] (f : MN) (g : M'N') (Dfinv : (x : M) → TangentSpace J (f x) →L[𝕜] TangentSpace I x) :
          OneJetBundle I M I' M'OneJetBundle J N J' N'

          A useful definition to define maps between two OneJetBundles.

          Equations
          Instances For
            theorem OneJetBundle.map_map {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] {F' : Type u_14} [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] {G' : Type u_15} [TopologicalSpace G'] {J' : ModelWithCorners 𝕜 F' G'} {N' : Type u_16} [TopologicalSpace N'] [ChartedSpace G' N'] {E₂ : Type u_17} [NormedAddCommGroup E₂] [NormedSpace 𝕜 E₂] {H₂ : Type u_18} [TopologicalSpace H₂] {I₂ : ModelWithCorners 𝕜 E₂ H₂} {M₂ : Type u_19} [TopologicalSpace M₂] [ChartedSpace H₂ M₂] {E₃ : Type u_20} [NormedAddCommGroup E₃] [NormedSpace 𝕜 E₃] {H₃ : Type u_21} [TopologicalSpace H₃] {I₃ : ModelWithCorners 𝕜 E₃ H₃} {M₃ : Type u_22} [TopologicalSpace M₃] [ChartedSpace H₃ M₃] {f₂ : NM₂} {f : MN} {g₂ : N'M₃} {g : M'N'} {Dfinv : (x : M) → TangentSpace J (f x) →L[𝕜] TangentSpace I x} {Df₂inv : (x : N) → TangentSpace I₂ (f₂ x) →L[𝕜] TangentSpace J x} {x : OneJetBundle I M I' M'} (hg₂ : MDifferentiableAt J' I₃ g₂ (g x.proj.2)) (hg : MDifferentiableAt I' J' g x.proj.2) :
            OneJetBundle.map J' I₃ f₂ g₂ Df₂inv (OneJetBundle.map I' J' f g Dfinv x) = OneJetBundle.map I' I₃ (f₂ f) (g₂ g) (fun (x : M) => (Dfinv x).comp (Df₂inv (f x))) x
            theorem OneJetBundle.map_id {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (x : OneJetBundle I M I' M') :
            OneJetBundle.map I' I' id id (fun (x : M) => ContinuousLinearMap.id 𝕜 (TangentSpace I x)) x = x
            theorem ContMDiffAt.oneJetBundle_map {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {E'' : Type u_8} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_9} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {M'' : Type u_10} [TopologicalSpace M''] [ChartedSpace H'' M''] [IsManifold I'' (↑) M''] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] {F' : Type u_14} [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] {G' : Type u_15} [TopologicalSpace G'] {J' : ModelWithCorners 𝕜 F' G'} {N' : Type u_16} [TopologicalSpace N'] [ChartedSpace G' N'] [IsManifold J' (↑) N'] [IsManifold J (↑) N] {f : M''MN} {g : M''M'N'} {x₀ : M''} {Dfinv : (z : M'') → (x : M) → TangentSpace J (f z x) →L[𝕜] TangentSpace I x} {k : M''OneJetBundle I M I' M'} (hf : ContMDiffAt (I''.prod I) J (↑) (Function.uncurry f) (x₀, (k x₀).proj.1)) (hg : ContMDiffAt (I''.prod I') J' (↑) (Function.uncurry g) (x₀, (k x₀).proj.2)) (hDfinv : ContMDiffAt I'' (modelWithCornersSelf 𝕜 (F →L[𝕜] E)) (↑) (inTangentCoordinates J I (fun (x : M'') => f x (k x).proj.1) (fun (x : M'') => (k x).proj.1) (fun (x : M'') => Dfinv x (k x).proj.1) x₀) x₀) (hk : ContMDiffAt I'' ((I.prod I').prod (modelWithCornersSelf 𝕜 (E →L[𝕜] E'))) (↑) k x₀) :
            ContMDiffAt I'' ((J.prod J').prod (modelWithCornersSelf 𝕜 (F →L[𝕜] F'))) (↑) (fun (z : M'') => OneJetBundle.map I' J' (f z) (g z) (Dfinv z) (k z)) x₀
            def mapLeft {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] (f : MN) (Dfinv : (x : M) → TangentSpace J (f x) →L[𝕜] TangentSpace I x) :
            OneJetBundle I M I' M'OneJetBundle J N I' M'

            A useful definition to define maps between two OneJetBundles.

            Equations
            Instances For
              theorem mapLeft_eq_map {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] (f : MN) (Dfinv : (x : M) → TangentSpace J (f x) →L[𝕜] TangentSpace I x) :
              mapLeft f Dfinv = OneJetBundle.map I' I' f id Dfinv
              theorem ContMDiffAt.mapLeft {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] {F' : Type u_14} [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] {G' : Type u_15} [TopologicalSpace G'] {J' : ModelWithCorners 𝕜 F' G'} {N' : Type u_16} [TopologicalSpace N'] [ChartedSpace G' N'] [IsManifold J' (↑) N'] [IsManifold J (↑) N] {f : N'MN} {x₀ : N'} {Dfinv : (z : N') → (x : M) → TangentSpace J (f z x) →L[𝕜] TangentSpace I x} {g : N'OneJetBundle I M I' M'} (hf : ContMDiffAt (J'.prod I) J (↑) (Function.uncurry f) (x₀, (g x₀).proj.1)) (hDfinv : ContMDiffAt J' (modelWithCornersSelf 𝕜 (F →L[𝕜] E)) (↑) (inTangentCoordinates J I (fun (x : N') => f x (g x).proj.1) (fun (x : N') => (g x).proj.1) (fun (x : N') => Dfinv x (g x).proj.1) x₀) x₀) (hg : ContMDiffAt J' ((I.prod I').prod (modelWithCornersSelf 𝕜 (E →L[𝕜] E'))) (↑) g x₀) :
              ContMDiffAt J' ((J.prod I').prod (modelWithCornersSelf 𝕜 (F →L[𝕜] E'))) (↑) (fun (z : N') => _root_.mapLeft (f z) (Dfinv z) (g z)) x₀
              def bundleFst {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] :
              OneJetBundle (J.prod I) (N × M) I' M'OneJetBundle J N I' M'

              The projection J¹(E × P, F) → J¹(E, F). Not actually used.

              Equations
              Instances For
                def bundleSnd {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] :
                OneJetBundle (J.prod I) (N × M) I' M'OneJetBundle I M I' M'

                The projection J¹(P × E, F) → J¹(E, F).

                Equations
                Instances For
                  theorem bundleSnd_eq {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] (x : OneJetBundle (J.prod I) (N × M) I' M') :
                  bundleSnd x = mapLeft Prod.snd (fun (x : N × M) => ContinuousLinearMap.inr 𝕜 F E) x
                  theorem contMDiff_bundleSnd {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {F : Type u_11} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {G : Type u_12} [TopologicalSpace G] {J : ModelWithCorners 𝕜 F G} {N : Type u_13} [TopologicalSpace N] [ChartedSpace G N] [IsManifold J (↑) N] :
                  ContMDiff (((J.prod I).prod I').prod (modelWithCornersSelf 𝕜 (F × E →L[𝕜] E'))) ((I.prod I').prod (modelWithCornersSelf 𝕜 (E →L[𝕜] E'))) (↑) bundleSnd
                  theorem partialEquiv_eq_equiv {α : Type u_23} {β : Type u_24} {f : PartialEquiv α β} {e : α β} (h1 : ∀ (x : α), f x = e x) (h2 : f.source = Set.univ) (h3 : f.target = Set.univ) :
                  @[simp]
                  theorem oneJetBundle_model_space_chartAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} (p : OneJetBundle I H I' H') :

                  In the OneJetBundle to the model space, the charts are just the canonical identification between a product type and a bundle total space type, a.k.a. Bundle.TotalSpace.toProd.

                  @[simp]
                  theorem oneJetBundle_model_space_coe_chartAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} (p : OneJetBundle I H I' H') :
                  (chartAt (ModelProd (ModelProd H H') (E →L[𝕜] E')) p) = (Bundle.TotalSpace.toProd (H × H') (E →L[𝕜] E'))
                  @[simp]
                  theorem oneJetBundle_model_space_coe_chartAt_symm {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} (p : OneJetBundle I H I' H') :
                  (chartAt (ModelProd (ModelProd H H') (E →L[𝕜] E')) p).symm = (Bundle.TotalSpace.toProd (H × H') (E →L[𝕜] E')).symm
                  def oneJetBundleModelSpaceHomeomorph {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') :
                  OneJetBundle I H I' H' ≃ₜ ModelProd (ModelProd H H') (E →L[𝕜] E')

                  The canonical identification between the one-jet bundle to the model space and the product, as a homeomorphism

                  Equations
                  Instances For
                    @[simp]
                    theorem oneJetBundleModelSpaceHomeomorph_coe {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') :
                    @[simp]
                    theorem oneJetBundleModelSpaceHomeomorph_coe_symm {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') :