Documentation

SphereEversion.Local.Relation

Local partial differential relations and their formal solutions #

This file defines RelLoc E F, the type of first order partial differential relations for maps between two real normed spaces E and F.

To any R : RelLoc E F we associate the type sol R of maps f : E → F of solutions of R, and its formal counterpart FormalSol R. (FIXME(grunweg): sol is never mentioned; is this docstring outdated?)

The h-principle question is whether we can deform any formal solution into a solution. The type of deformations is HtpyJetSet E F (homotopies of 1-jet sections).

@[reducible, inline]
abbrev RelLoc (E : Type u_1) [NormedAddCommGroup E] [NormedSpace E] (F : Type u_2) [NormedAddCommGroup F] [NormedSpace F] :
Type (max u_2 u_1)

A first order relation for maps between real vector spaces.

Equations
Instances For
    def JetSec.IsFormalSol {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (𝓕 : JetSec E F) (R : RelLoc E F) :

    A predicate stating that a 1-jet section is a formal solution to a first order relation for maps between vector spaces.

    Equations
    Instances For
      structure RelLoc.FormalSol {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (R : RelLoc E F) extends JetSec E F :
      Type (max u_1 u_2)

      A formal solution to a local relation R.

      Instances For
        theorem RelLoc.FormalSol.ext {E : Type u_1} {inst✝ : NormedAddCommGroup E} {inst✝¹ : NormedSpace E} {F : Type u_2} {inst✝² : NormedAddCommGroup F} {inst✝³ : NormedSpace F} {R : RelLoc E F} {x y : R.FormalSol} (f : (↑x).f = (↑y).f) (φ : (↑x).φ = (↑y).φ) :
        x = y
        @[simp]
        theorem RelLoc.FormalSol.toJetSec_eq_coe {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] {R : RelLoc E F} (𝓕 : R.FormalSol) :
        𝓕 = 𝓕
        @[simp]
        theorem RelLoc.FormalSol.coeIsFormalSol {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] {R : RelLoc E F} (𝓕 : R.FormalSol) :
        (↑𝓕).IsFormalSol R
        def JetSec.IsFormalSol.formalSol {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] {𝓕 : JetSec E F} {R : RelLoc E F} (h : 𝓕.IsFormalSol R) :

        Bundling a formal solution from a 1-jet section that is a formal solution.

        Equations
        Instances For
          Equations
          @[simp]
          theorem RelLoc.FormalSol.coe_apply {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] {R : RelLoc E F} (𝓕 : R.FormalSol) (x : E) :
          𝓕 x = 𝓕 x
          theorem RelLoc.FormalSol.eq_iff {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] {R : RelLoc E F} {𝓕 𝓕' : R.FormalSol} {x : E} :
          𝓕 x = 𝓕' x (↑𝓕).f x = (↑𝓕').f x (↑𝓕).φ x = (↑𝓕').φ x
          def RelLoc.FormalSol.IsHolonomicAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] {R : RelLoc E F} (𝓕 : R.FormalSol) (x : E) :

          A formal solution (f, φ) is holonomic at x if the differential of f at x is φ x.

          Equations
          Instances For
            theorem RelLoc.FormalSol.isHolonomicAt_congr {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] {R : RelLoc E F} (𝓕 𝓕' : R.FormalSol) {s : Set E} (h : ∀ᶠ (x : E) in nhdsSet s, 𝓕 x = 𝓕' x) :
            ∀ᶠ (x : E) in nhdsSet s, 𝓕.IsHolonomicAt x 𝓕'.IsHolonomicAt x
            structure RelLoc.FamilyFormalSol {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (P : Type u_3) [NormedAddCommGroup P] [NormedSpace P] (R : RelLoc E F) extends FamilyJetSec E F P :
            Type (max (max u_1 u_2) u_3)

            A family of formal solutions is a 1-parameter family of formal solutions.

            Instances For
              theorem RelLoc.FamilyFormalSol.ext {E : Type u_1} {inst✝ : NormedAddCommGroup E} {inst✝¹ : NormedSpace E} {F : Type u_2} {inst✝² : NormedAddCommGroup F} {inst✝³ : NormedSpace F} {P : Type u_3} {inst✝⁴ : NormedAddCommGroup P} {inst✝⁵ : NormedSpace P} {R : RelLoc E F} {x y : FamilyFormalSol P R} (f : x.f = y.f) (φ : x.φ = y.φ) :
              x = y
              @[reducible]
              def RelLoc.HtpyFormalSol {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (R : RelLoc E F) :
              Type (max (max u_1 u_2) 0)

              A homotopy of formal solutions is a 1-parameter family of formal solutions.

              Equations
              Instances For
                Equations