Documentation

SphereEversion.Loops.Exists

theorem exist_loops_aux1 {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {F : Type u_2} [NormedAddCommGroup F] {g b : EF} {Ω : Set (E × F)} {K : Set E} [NormedSpace F] [FiniteDimensional F] (hK : IsCompact K) (hΩ_op : IsOpen Ω) (hb : 𝒞 (↑) b) (hgK : ∀ᶠ (x : E) in nhdsSet K, g x = b x) (hconv : ∀ (x : E), g x hull (connectedComponentIn (Prod.mk x ⁻¹' Ω) (b x))) :
∃ (γ : ELoop F), VnhdsSet K, ε > 0, SurroundingFamilyIn g b γ V Ω (∀ xV, Metric.ball (x, b x) (ε + ε) Ω) xV, ∀ (t s : ), dist ((γ x t) s) (b x) < ε
theorem exist_loops_aux2 {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {F : Type u_2} [NormedAddCommGroup F] {g b : EF} {Ω : Set (E × F)} {K : Set E} [NormedSpace F] [FiniteDimensional F] [FiniteDimensional E] (hK : IsCompact K) (hΩ_op : IsOpen Ω) (hg : 𝒞 (↑) g) (hb : 𝒞 (↑) b) (hgK : ∀ᶠ (x : E) in nhdsSet K, g x = b x) (hconv : ∀ (x : E), g x hull (connectedComponentIn (Prod.mk x ⁻¹' Ω) (b x))) :
∃ (γ : ELoop F), SurroundingFamilyIn g b γ Set.univ Ω 𝒞 γ ∀ᶠ (x : E) in nhdsSet K, ∀ (t s : ), Metric.closedBall (x, b x) (dist ((γ x t) s) (b x)) Ω
structure NiceLoop {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {F : Type u_2} [NormedAddCommGroup F] (g b : EF) (Ω : Set (E × F)) (K : Set E) [NormedSpace F] (γ : ELoop F) :

A "nice" family of loops consists of all the properties we want from the exist_loops lemma: it is a smooth homotopy in Ω with fixed endpoints from the constant loop at b x to a loop with average g x that is also constantly b x near K. The first two conditions are implementation specific: the homotopy is constant outside the unit interval.

  • t_le_zero (x : E) (t : ) : t 0γ t x = γ 0 x
  • t_ge_one (x : E) (t : ) : t 1γ t x = γ 1 x
  • t_zero (x : E) (s : ) : (γ 0 x) s = b x
  • s_zero (x : E) (t : ) : (γ t x) 0 = b x
  • avg (x : E) : (γ 1 x).average = g x
  • mem_Ω (x : E) (t s : ) : (x, (γ t x) s) Ω
  • smooth : 𝒞 γ
  • rel_K : ∀ᶠ (x : E) in nhdsSet K, ∀ (t s : ), (γ t x) s = b x
Instances For
    theorem exist_loops {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {F : Type u_2} [NormedAddCommGroup F] {g b : EF} {Ω : Set (E × F)} {K : Set E} [NormedSpace F] [FiniteDimensional F] [FiniteDimensional E] (hK : IsCompact K) (hΩ_op : IsOpen Ω) (hg : 𝒞 (↑) g) (hb : 𝒞 (↑) b) (hgK : ∀ᶠ (x : E) in nhdsSet K, g x = b x) (hconv : ∀ (x : E), g x hull (connectedComponentIn (Prod.mk x ⁻¹' Ω) (b x))) :
    ∃ (γ : ELoop F), NiceLoop g b Ω K γ