theorem
exist_loops_aux1
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{F : Type u_2}
[NormedAddCommGroup F]
{g b : E → F}
{Ω : Set (E × F)}
{K : Set E}
[NormedSpace ℝ F]
[FiniteDimensional ℝ F]
(hK : IsCompact K)
(hΩ_op : IsOpen Ω)
(hb : 𝒞 (↑⊤) b)
(hgK : ∀ᶠ (x : E) in nhdsSet K, g x = b x)
(hconv : ∀ (x : E), g x ∈ hull (connectedComponentIn (Prod.mk x ⁻¹' Ω) (b x)))
:
theorem
exist_loops_aux2
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{F : Type u_2}
[NormedAddCommGroup F]
{g b : E → F}
{Ω : Set (E × F)}
{K : Set E}
[NormedSpace ℝ F]
[FiniteDimensional ℝ F]
[FiniteDimensional ℝ E]
(hK : IsCompact K)
(hΩ_op : IsOpen Ω)
(hg : 𝒞 (↑⊤) g)
(hb : 𝒞 (↑⊤) b)
(hgK : ∀ᶠ (x : E) in nhdsSet K, g x = b x)
(hconv : ∀ (x : E), g x ∈ hull (connectedComponentIn (Prod.mk x ⁻¹' Ω) (b x)))
:
structure
NiceLoop
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{F : Type u_2}
[NormedAddCommGroup F]
(g b : E → F)
(Ω : Set (E × F))
(K : Set E)
[NormedSpace ℝ F]
(γ : ℝ → E → Loop F)
:
A "nice" family of loops consists of all the properties we want from the exist_loops
lemma:
it is a smooth homotopy in Ω
with fixed endpoints from the constant loop at b x
to a loop with
average g x
that is also constantly b x
near K
.
The first two conditions are implementation specific: the homotopy is constant outside the unit
interval.
Instances For
theorem
exist_loops
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{F : Type u_2}
[NormedAddCommGroup F]
{g b : E → F}
{Ω : Set (E × F)}
{K : Set E}
[NormedSpace ℝ F]
[FiniteDimensional ℝ F]
[FiniteDimensional ℝ E]
(hK : IsCompact K)
(hΩ_op : IsOpen Ω)
(hg : 𝒞 (↑⊤) g)
(hb : 𝒞 (↑⊤) b)
(hgK : ∀ᶠ (x : E) in nhdsSet K, g x = b x)
(hconv : ∀ (x : E), g x ∈ hull (connectedComponentIn (Prod.mk x ⁻¹' Ω) (b x)))
: