Boundedness property of periodic function #
The main purpose of that file it to prove
lemma Continuous.bounded_of_onePeriodic_of_isCompact {f : X → ℝ → E} (cont : Continuous ↿f)
(hper : ∀ x, OnePeriodic (f x)) {K : Set X} (hK : IsCompact K) (hfK : ∀ x ∉ K, f x = 0) :
∃ C, ∀ x t, ‖f x t‖ ≤ C
This is done by introducing the quotient 𝕊₁ = ℝ/ℤ as a compact topological space. Patrick is not sure this is the optimal version.
In the first part, generalize many lemmas to any period and add to Algebra.Ring.Periodic.lean
?
The integers as an additive subgroup of the reals.
Equations
Instances For
The proposition that a function on ℝ
is periodic with period 1
.
Equations
- OnePeriodic f = Function.Periodic f 1
Instances For
A one-periodic function on ℝ
descends to a function on the circle ℝ ⧸ ℤ
.
Equations
- h.lift = Quotient.lift f ⋯
Instances For
theorem
Continuous.bounded_on_compact_of_onePeriodic
{X : Type u_2}
{E : Type u_3}
[TopologicalSpace X]
[NormedAddCommGroup E]
{f : X → ℝ → E}
(cont : Continuous ↿f)
(hper : ∀ (x : X), OnePeriodic (f x))
{K : Set X}
(hK : IsCompact K)
:
theorem
Continuous.bounded_of_onePeriodic_of_compact
{X : Type u_2}
{E : Type u_3}
[TopologicalSpace X]
[NormedAddCommGroup E]
{f : X → ℝ → E}
(cont : Continuous ↿f)
(hper : ∀ (x : X), OnePeriodic (f x))
{K : Set X}
(hK : IsCompact K)
(hfK : ∀ x ∉ K, f x = 0)
: