Documentation

SphereEversion.ToMathlib.Algebra.Ring.Periodic

Boundedness property of periodic function #

The main purpose of that file it to prove

lemma Continuous.bounded_of_onePeriodic_of_isCompact {f : X → ℝ → E} (cont : Continuous ↿f)
  (hper : ∀ x, OnePeriodic (f x)) {K : Set X} (hK : IsCompact K) (hfK : ∀ x ∉ K, f x = 0) :
  ∃ C, ∀ x t, ‖f x t‖ ≤ C

This is done by introducing the quotient 𝕊₁ = ℝ/ℤ as a compact topological space. Patrick is not sure this is the optimal version.

In the first part, generalize many lemmas to any period and add to Algebra.Ring.Periodic.lean?

The integers as an additive subgroup of the reals.

Equations
Instances For

    The equivalence relation on corresponding to its partition as cosets of .

    Equations
    Instances For
      def OnePeriodic {α : Type u_1} (f : α) :

      The proposition that a function on is periodic with period 1.

      Equations
      Instances For
        theorem OnePeriodic.add_nat {α : Type u_1} {f : α} (h : OnePeriodic f) (k : ) (x : ) :
        f (x + k) = f x
        theorem OnePeriodic.add_int {α : Type u_1} {f : α} (h : OnePeriodic f) (k : ) (x : ) :
        f (x + k) = f x

        The circle 𝕊₁ := ℝ/ℤ.

        TODO [Yury]: use AddCircle.

        Equations
        Instances For
          theorem transOne_rel_iff {a b : } :
          transOne a b ∃ (k : ), b = a + k

          The quotient map from the reals to the circle ℝ ⧸ ℤ.

          Equations
          Instances For
            @[simp]
            theorem proj𝕊₁_add_int (t : ) (k : ) :

            The unique representative in the half-open interval [0, 1) for each coset of in , regarded as a map from the circle 𝕊₁ → ℝ.

            Equations
            Instances For
              def OnePeriodic.lift {α : Type u_1} {f : α} (h : OnePeriodic f) :
              𝕊₁α

              A one-periodic function on descends to a function on the circle ℝ ⧸ ℤ.

              Equations
              Instances For
                theorem Continuous.bounded_on_compact_of_onePeriodic {X : Type u_2} {E : Type u_3} [TopologicalSpace X] [NormedAddCommGroup E] {f : XE} (cont : Continuous f) (hper : ∀ (x : X), OnePeriodic (f x)) {K : Set X} (hK : IsCompact K) :
                ∃ (C : ), xK, ∀ (t : ), f x t C
                theorem Continuous.bounded_of_onePeriodic_of_compact {X : Type u_2} {E : Type u_3} [TopologicalSpace X] [NormedAddCommGroup E] {f : XE} (cont : Continuous f) (hper : ∀ (x : X), OnePeriodic (f x)) {K : Set X} (hK : IsCompact K) (hfK : xK, f x = 0) :
                ∃ (C : ), ∀ (x : X) (t : ), f x t C