Boundedness property of periodic function #
The main purpose of that file it to prove
lemma Continuous.bounded_of_onePeriodic_of_isCompact {f : X → ℝ → E} (cont : Continuous ↿f)
(hper : ∀ x, OnePeriodic (f x)) {K : Set X} (hK : IsCompact K) (hfK : ∀ x ∉ K, f x = 0) :
∃ C, ∀ x t, ‖f x t‖ ≤ C
This is done by introducing the quotient 𝕊₁ = ℝ/ℤ as a compact topological space. Patrick is not sure this is the optimal version.
In the first part, generalize many lemmas to any period and add to Algebra.Ring.Periodic.lean?
The integers as an additive subgroup of the reals.
Equations
Instances For
The proposition that a function on ℝ is periodic with period 1.
Equations
- OnePeriodic f = Function.Periodic f 1
Instances For
A one-periodic function on ℝ descends to a function on the circle ℝ ⧸ ℤ.
Equations
- h.lift = Quotient.lift f ⋯
Instances For
theorem
Continuous.bounded_on_compact_of_onePeriodic
{X : Type u_2}
{E : Type u_3}
[TopologicalSpace X]
[NormedAddCommGroup E]
{f : X → ℝ → E}
(cont : Continuous ↿f)
(hper : ∀ (x : X), OnePeriodic (f x))
{K : Set X}
(hK : IsCompact K)
:
theorem
Continuous.bounded_of_onePeriodic_of_compact
{X : Type u_2}
{E : Type u_3}
[TopologicalSpace X]
[NormedAddCommGroup E]
{f : X → ℝ → E}
(cont : Continuous ↿f)
(hper : ∀ (x : X), OnePeriodic (f x))
{K : Set X}
(hK : IsCompact K)
(hfK : ∀ x ∉ K, f x = 0)
: