Documentation

SphereEversion.ToMathlib.Analysis.Convex.Basic

theorem map_finsum {β : Type u_1} {α : Type u_2} {γ : Type u_3} [AddCommMonoid β] [AddCommMonoid γ] {G : Type u_4} [FunLike G β γ] [AddMonoidHomClass G β γ] (g : G) {f : αβ} (hf : (Function.support f).Finite) :
g (∑ᶠ (i : α), f i) = ∑ᶠ (i : α), g (f i)
theorem finprod_eq_prod_of_mulSupport_subset_of_finite {α : Type u_1} {M : Type u_2} [CommMonoid M] (f : αM) {s : Set α} (h : Function.mulSupport f s) (hs : s.Finite) :
∏ᶠ (i : α), f i = ihs.toFinset, f i
theorem finsum_eq_sum_of_support_subset_of_finite {α : Type u_1} {M : Type u_2} [AddCommMonoid M] (f : αM) {s : Set α} (h : Function.support f s) (hs : s.Finite) :
∑ᶠ (i : α), f i = ihs.toFinset, f i
def reallyConvexHull (𝕜 : Type u_6) {E : Type u_7} [OrderedSemiring 𝕜] [AddCommMonoid E] [SMul 𝕜 E] (s : Set E) :
Set E
Equations
Instances For
    theorem finsum.exists_ne_zero_of_sum_ne_zero {β : Type u_6} {α : Type u_7} {s : Finset α} {f : αβ} [AddCommMonoid β] :
    ∑ᶠ (x : α) (_ : x s), f x 0as, f a 0
    theorem finite_of_finprod_ne_one {M : Type u_6} {ι : Type u_7} [CommMonoid M] {f : ιM} (h : ∏ᶠ (i : ι), f i 1) :
    theorem finite_of_finsum_ne_zero {M : Type u_6} {ι : Type u_7} [AddCommMonoid M] {f : ιM} (h : ∑ᶠ (i : ι), f i 0) :
    theorem support_finite_of_finsum_eq_of_neZero {M : Type u_6} {ι : Type u_7} [AddCommMonoid M] {f : ιM} {x : M} [NeZero x] (h : ∑ᶠ (i : ι), f i = x) :
    theorem Subsingleton.mulSupport_eq {α : Type u_6} {β : Type u_7} [Subsingleton β] [One β] (f : αβ) :
    theorem Subsingleton.support_eq {α : Type u_6} {β : Type u_7} [Subsingleton β] [Zero β] (f : αβ) :
    theorem support_finite_of_finsum_eq_one {M : Type u_6} {ι : Type u_7} [NonAssocSemiring M] {f : ιM} (h : ∑ᶠ (i : ι), f i = 1) :
    theorem finsum_sum_filter {α : Type u_6} {β : Type u_7} {M : Type u_8} [AddCommMonoid M] (f : βα) (s : Finset β) [DecidableEq α] (g : βM) :
    ∑ᶠ (x : α), y{js | f j = x}, g y = ks, g k
    theorem sum_mem_reallyConvexHull {𝕜 : Type u_1} {E : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [Module 𝕜 E] {s : Set E} {ι : Type u_6} {t : Finset ι} {w : ι𝕜} {z : ιE} (h₀ : it, 0 w i) (h₁ : it, w i = 1) (hz : it, z i s) :
    it, w i z i reallyConvexHull 𝕜 s
    theorem reallyConvexHull_mono {𝕜 : Type u_1} {E : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [Module 𝕜 E] :
    def ReallyConvex (𝕜 : Type u_6) {E : Type u_7} [OrderedSemiring 𝕜] [AddCommMonoid E] [Module 𝕜 E] (s : Set E) :

    Generalization of Convex to semirings. We only add the s = ∅ clause if 𝕜 is trivial.

    Equations
    Instances For
      @[simp]
      theorem reallyConvex_empty {𝕜 : Type u_1} {E : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [Module 𝕜 E] :
      @[simp]
      theorem reallyConvex_univ {𝕜 : Type u_1} {E : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [Module 𝕜 E] :
      theorem Nontrivial.reallyConvex_iff {𝕜 : Type u_1} {E : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [Module 𝕜 E] {s : Set E} [Nontrivial 𝕜] :
      ReallyConvex 𝕜 s ∀ (w : E𝕜), 0 wFunction.support w s∑ᶠ (x : E), w x = 1∑ᶠ (x : E), w x x s
      theorem Subsingleton.reallyConvex {𝕜 : Type u_1} {E : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [Module 𝕜 E] {s : Set E} [Subsingleton 𝕜] :
      theorem reallyConvex_iff_hull {𝕜 : Type u_1} {E : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [Module 𝕜 E] {s : Set E} [Nontrivial 𝕜] :
      theorem ReallyConvex.sum_mem {𝕜 : Type u_1} {E : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [Module 𝕜 E] {s : Set E} [Nontrivial 𝕜] (hs : ReallyConvex 𝕜 s) {ι : Type u_6} {t : Finset ι} {w : ι𝕜} {z : ιE} (h₀ : it, 0 w i) (h₁ : it, w i = 1) (hz : it, z i s) :
      it, w i z i s
      theorem ReallyConvex.finsum_mem {𝕜 : Type u_1} {E : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [Module 𝕜 E] {s : Set E} [Nontrivial 𝕜] (hs : ReallyConvex 𝕜 s) {ι : Type u_6} {w : ι𝕜} {z : ιE} (h₀ : ∀ (i : ι), 0 w i) (h₁ : ∑ᶠ (i : ι), w i = 1) (hz : iFunction.support w, z i s) :
      ∑ᶠ (i : ι), w i z i s
      theorem ReallyConvex.add_mem {𝕜 : Type u_1} {E : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [Module 𝕜 E] {s : Set E} (hs : ReallyConvex 𝕜 s) {w₁ w₂ : 𝕜} {z₁ z₂ : E} (hw₁ : 0 w₁) (hw₂ : 0 w₂) (hw : w₁ + w₂ = 1) (hz₁ : z₁ s) (hz₂ : z₂ s) :
      w₁ z₁ + w₂ z₂ s
      theorem ReallyConvex.inter {𝕜 : Type u_1} {E : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [Module 𝕜 E] {s t : Set E} (hs : ReallyConvex 𝕜 s) (ht : ReallyConvex 𝕜 t) :
      ReallyConvex 𝕜 (s t)
      theorem ReallyConvex.preimageₛₗ {𝕜 : Type u_1} {𝕜' : Type u_2} {E : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [Module 𝕜 E] {E' : Type u_5} [AddCommMonoid E'] [OrderedSemiring 𝕜'] [Module 𝕜' E'] (σ : 𝕜 →+*o 𝕜') (f : E →ₛₗ[σ.toRingHom] E') {s : Set E'} (hs : ReallyConvex 𝕜' s) :
      ReallyConvex 𝕜 (f ⁻¹' s)
      theorem ReallyConvex.preimage {𝕜 : Type u_1} {E : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [Module 𝕜 E] {E₂ : Type u_4} [AddCommMonoid E₂] [Module 𝕜 E₂] (f : E →ₗ[𝕜] E₂) {s : Set E₂} (hs : ReallyConvex 𝕜 s) :
      ReallyConvex 𝕜 (f ⁻¹' s)
      theorem reallyConvex_iff_convex (𝕜 : Type u_1) {E : Type u_2} [LinearOrderedField 𝕜] [AddCommGroup E] [Module 𝕜 E] {s : Set E} :
      ReallyConvex 𝕜 s Convex 𝕜 s