def
reallyConvexHull
(π : Type u_6)
{E : Type u_7}
[Semiring π]
[PartialOrder π]
[AddCommMonoid E]
[SMul π E]
(s : Set E)
:
Set E
Equations
Instances For
theorem
finite_of_finprod_ne_one
{M : Type u_6}
{ΞΉ : Type u_7}
[CommMonoid M]
{f : ΞΉ β M}
(h : βαΆ (i : ΞΉ), f i β 1)
:
theorem
finite_of_finsum_ne_zero
{M : Type u_6}
{ΞΉ : Type u_7}
[AddCommMonoid M]
{f : ΞΉ β M}
(h : βαΆ (i : ΞΉ), f i β 0)
:
theorem
support_finite_of_finsum_eq_of_neZero
{M : Type u_6}
{ΞΉ : Type u_7}
[AddCommMonoid M]
{f : ΞΉ β M}
{x : M}
[NeZero x]
(h : βαΆ (i : ΞΉ), f i = x)
:
theorem
sum_mem_reallyConvexHull
{π : Type u_1}
{E : Type u_3}
[Semiring π]
[PartialOrder π]
[AddCommMonoid E]
[Module π E]
[IsOrderedRing π]
{s : Set E}
{ΞΉ : Type u_6}
{t : Finset ΞΉ}
{w : ΞΉ β π}
{z : ΞΉ β E}
(hβ : β i β t, 0 β€ w i)
(hβ : β i β t, w i = 1)
(hz : β i β t, z i β s)
:
theorem
reallyConvexHull_mono
{π : Type u_1}
{E : Type u_3}
[Semiring π]
[PartialOrder π]
[AddCommMonoid E]
[Module π E]
:
Monotone (reallyConvexHull π)
def
ReallyConvex
(π : Type u_6)
{E : Type u_7}
[Semiring π]
[PartialOrder π]
[AddCommMonoid E]
[Module π E]
(s : Set E)
:
Generalization of Convex to semirings. We only add the s = β
clause if π is trivial.
Equations
Instances For
@[simp]
theorem
reallyConvex_empty
{π : Type u_1}
{E : Type u_3}
[Semiring π]
[PartialOrder π]
[AddCommMonoid E]
[Module π E]
:
ReallyConvex π β
@[simp]
theorem
reallyConvex_univ
{π : Type u_1}
{E : Type u_3}
[Semiring π]
[PartialOrder π]
[AddCommMonoid E]
[Module π E]
:
ReallyConvex π Set.univ
theorem
Nontrivial.reallyConvex_iff
{π : Type u_1}
{E : Type u_3}
[Semiring π]
[PartialOrder π]
[AddCommMonoid E]
[Module π E]
{s : Set E}
[Nontrivial π]
:
theorem
Subsingleton.reallyConvex
{π : Type u_1}
{E : Type u_3}
[Semiring π]
[PartialOrder π]
[AddCommMonoid E]
[Module π E]
{s : Set E}
[Subsingleton π]
:
ReallyConvex π s
theorem
reallyConvex_iff_hull
{π : Type u_1}
{E : Type u_3}
[Semiring π]
[PartialOrder π]
[AddCommMonoid E]
[Module π E]
{s : Set E}
[Nontrivial π]
:
theorem
ReallyConvex.sum_mem
{π : Type u_1}
{E : Type u_3}
[Semiring π]
[PartialOrder π]
[AddCommMonoid E]
[Module π E]
{s : Set E}
[Nontrivial π]
[IsOrderedRing π]
(hs : ReallyConvex π s)
{ΞΉ : Type u_6}
{t : Finset ΞΉ}
{w : ΞΉ β π}
{z : ΞΉ β E}
(hβ : β i β t, 0 β€ w i)
(hβ : β i β t, w i = 1)
(hz : β i β t, z i β s)
:
theorem
ReallyConvex.finsum_mem
{π : Type u_1}
{E : Type u_3}
[Semiring π]
[PartialOrder π]
[AddCommMonoid E]
[Module π E]
{s : Set E}
[Nontrivial π]
[IsOrderedRing π]
(hs : ReallyConvex π s)
{ΞΉ : Type u_6}
{w : ΞΉ β π}
{z : ΞΉ β E}
(hβ : β (i : ΞΉ), 0 β€ w i)
(hβ : βαΆ (i : ΞΉ), w i = 1)
(hz : β i β Function.support w, z i β s)
:
theorem
ReallyConvex.add_mem
{π : Type u_1}
{E : Type u_3}
[Semiring π]
[PartialOrder π]
[AddCommMonoid E]
[Module π E]
{s : Set E}
[IsOrderedRing π]
(hs : ReallyConvex π s)
{wβ wβ : π}
{zβ zβ : E}
(hwβ : 0 β€ wβ)
(hwβ : 0 β€ wβ)
(hw : wβ + wβ = 1)
(hzβ : zβ β s)
(hzβ : zβ β s)
:
theorem
ReallyConvex.inter
{π : Type u_1}
{E : Type u_3}
[Semiring π]
[PartialOrder π]
[AddCommMonoid E]
[Module π E]
{s t : Set E}
(hs : ReallyConvex π s)
(ht : ReallyConvex π t)
:
ReallyConvex π (s β© t)
theorem
ReallyConvex.preimageββ
{π : Type u_1}
{π' : Type u_2}
{E : Type u_3}
{E' : Type u_5}
[Semiring π]
[PartialOrder π]
[AddCommMonoid E]
[Module π E]
[AddCommMonoid E']
[Semiring π']
[PartialOrder π']
[IsOrderedRing π']
[Module π' E']
(Ο : π β+*o π')
(f : E βββ[Ο.toRingHom] E')
{s : Set E'}
(hs : ReallyConvex π' s)
:
ReallyConvex π (βf β»ΒΉ' s)
theorem
ReallyConvex.preimage
{π : Type u_1}
{E : Type u_3}
{Eβ : Type u_4}
[Semiring π]
[PartialOrder π]
[AddCommMonoid E]
[Module π E]
[AddCommMonoid Eβ]
[Module π Eβ]
[IsOrderedRing π]
(f : E ββ[π] Eβ)
{s : Set Eβ}
(hs : ReallyConvex π s)
:
ReallyConvex π (βf β»ΒΉ' s)
theorem
reallyConvex_iff_convex
(π : Type u_1)
{E : Type u_2}
[Field π]
[LinearOrder π]
[IsStrictOrderedRing π]
[AddCommGroup E]
[Module π E]
{s : Set E}
: