Documentation

SphereEversion.ToMathlib.Analysis.Convex.Basic

def reallyConvexHull (π•œ : Type u_6) {E : Type u_7} [Semiring π•œ] [PartialOrder π•œ] [AddCommMonoid E] [SMul π•œ E] (s : Set E) :
Set E
Equations
Instances For
    theorem finsum.exists_ne_zero_of_sum_ne_zero {Ξ² : Type u_6} {Ξ± : Type u_7} {s : Finset Ξ±} {f : Ξ± β†’ Ξ²} [AddCommMonoid Ξ²] :
    βˆ‘αΆ  (x : Ξ±) (_ : x ∈ s), f x β‰  0 β†’ βˆƒ a ∈ s, f a β‰  0
    theorem finite_of_finprod_ne_one {M : Type u_6} {ΞΉ : Type u_7} [CommMonoid M] {f : ΞΉ β†’ M} (h : ∏ᢠ (i : ΞΉ), f i β‰  1) :
    theorem finite_of_finsum_ne_zero {M : Type u_6} {ΞΉ : Type u_7} [AddCommMonoid M] {f : ΞΉ β†’ M} (h : βˆ‘αΆ  (i : ΞΉ), f i β‰  0) :
    theorem support_finite_of_finsum_eq_of_neZero {M : Type u_6} {ΞΉ : Type u_7} [AddCommMonoid M] {f : ΞΉ β†’ M} {x : M} [NeZero x] (h : βˆ‘αΆ  (i : ΞΉ), f i = x) :
    theorem sum_mem_reallyConvexHull {π•œ : Type u_1} {E : Type u_3} [Semiring π•œ] [PartialOrder π•œ] [AddCommMonoid E] [Module π•œ E] [IsOrderedRing π•œ] {s : Set E} {ΞΉ : Type u_6} {t : Finset ΞΉ} {w : ΞΉ β†’ π•œ} {z : ΞΉ β†’ E} (hβ‚€ : βˆ€ i ∈ t, 0 ≀ w i) (h₁ : βˆ‘ i ∈ t, w i = 1) (hz : βˆ€ i ∈ t, z i ∈ s) :
    βˆ‘ i ∈ t, w i β€’ z i ∈ reallyConvexHull π•œ s
    theorem reallyConvexHull_mono {π•œ : Type u_1} {E : Type u_3} [Semiring π•œ] [PartialOrder π•œ] [AddCommMonoid E] [Module π•œ E] :
    def ReallyConvex (π•œ : Type u_6) {E : Type u_7} [Semiring π•œ] [PartialOrder π•œ] [AddCommMonoid E] [Module π•œ E] (s : Set E) :

    Generalization of Convex to semirings. We only add the s = βˆ… clause if π•œ is trivial.

    Equations
    Instances For
      @[simp]
      theorem reallyConvex_empty {π•œ : Type u_1} {E : Type u_3} [Semiring π•œ] [PartialOrder π•œ] [AddCommMonoid E] [Module π•œ E] :
      @[simp]
      theorem reallyConvex_univ {π•œ : Type u_1} {E : Type u_3} [Semiring π•œ] [PartialOrder π•œ] [AddCommMonoid E] [Module π•œ E] :
      theorem Nontrivial.reallyConvex_iff {π•œ : Type u_1} {E : Type u_3} [Semiring π•œ] [PartialOrder π•œ] [AddCommMonoid E] [Module π•œ E] {s : Set E} [Nontrivial π•œ] :
      ReallyConvex π•œ s ↔ βˆ€ (w : E β†’ π•œ), 0 ≀ w β†’ Function.support w βŠ† s β†’ βˆ‘αΆ  (x : E), w x = 1 β†’ βˆ‘αΆ  (x : E), w x β€’ x ∈ s
      theorem Subsingleton.reallyConvex {π•œ : Type u_1} {E : Type u_3} [Semiring π•œ] [PartialOrder π•œ] [AddCommMonoid E] [Module π•œ E] {s : Set E} [Subsingleton π•œ] :
      ReallyConvex π•œ s
      theorem reallyConvex_iff_hull {π•œ : Type u_1} {E : Type u_3} [Semiring π•œ] [PartialOrder π•œ] [AddCommMonoid E] [Module π•œ E] {s : Set E} [Nontrivial π•œ] :
      ReallyConvex π•œ s ↔ reallyConvexHull π•œ s βŠ† s
      theorem ReallyConvex.sum_mem {π•œ : Type u_1} {E : Type u_3} [Semiring π•œ] [PartialOrder π•œ] [AddCommMonoid E] [Module π•œ E] {s : Set E} [Nontrivial π•œ] [IsOrderedRing π•œ] (hs : ReallyConvex π•œ s) {ΞΉ : Type u_6} {t : Finset ΞΉ} {w : ΞΉ β†’ π•œ} {z : ΞΉ β†’ E} (hβ‚€ : βˆ€ i ∈ t, 0 ≀ w i) (h₁ : βˆ‘ i ∈ t, w i = 1) (hz : βˆ€ i ∈ t, z i ∈ s) :
      βˆ‘ i ∈ t, w i β€’ z i ∈ s
      theorem ReallyConvex.finsum_mem {π•œ : Type u_1} {E : Type u_3} [Semiring π•œ] [PartialOrder π•œ] [AddCommMonoid E] [Module π•œ E] {s : Set E} [Nontrivial π•œ] [IsOrderedRing π•œ] (hs : ReallyConvex π•œ s) {ΞΉ : Type u_6} {w : ΞΉ β†’ π•œ} {z : ΞΉ β†’ E} (hβ‚€ : βˆ€ (i : ΞΉ), 0 ≀ w i) (h₁ : βˆ‘αΆ  (i : ΞΉ), w i = 1) (hz : βˆ€ i ∈ Function.support w, z i ∈ s) :
      βˆ‘αΆ  (i : ΞΉ), w i β€’ z i ∈ s
      theorem ReallyConvex.add_mem {π•œ : Type u_1} {E : Type u_3} [Semiring π•œ] [PartialOrder π•œ] [AddCommMonoid E] [Module π•œ E] {s : Set E} [IsOrderedRing π•œ] (hs : ReallyConvex π•œ s) {w₁ wβ‚‚ : π•œ} {z₁ zβ‚‚ : E} (hw₁ : 0 ≀ w₁) (hwβ‚‚ : 0 ≀ wβ‚‚) (hw : w₁ + wβ‚‚ = 1) (hz₁ : z₁ ∈ s) (hzβ‚‚ : zβ‚‚ ∈ s) :
      w₁ β€’ z₁ + wβ‚‚ β€’ zβ‚‚ ∈ s
      theorem ReallyConvex.inter {π•œ : Type u_1} {E : Type u_3} [Semiring π•œ] [PartialOrder π•œ] [AddCommMonoid E] [Module π•œ E] {s t : Set E} (hs : ReallyConvex π•œ s) (ht : ReallyConvex π•œ t) :
      ReallyConvex π•œ (s ∩ t)
      theorem ReallyConvex.preimageβ‚›β‚— {π•œ : Type u_1} {π•œ' : Type u_2} {E : Type u_3} {E' : Type u_5} [Semiring π•œ] [PartialOrder π•œ] [AddCommMonoid E] [Module π•œ E] [AddCommMonoid E'] [Semiring π•œ'] [PartialOrder π•œ'] [IsOrderedRing π•œ'] [Module π•œ' E'] (Οƒ : π•œ β†’+*o π•œ') (f : E β†’β‚›β‚—[Οƒ.toRingHom] E') {s : Set E'} (hs : ReallyConvex π•œ' s) :
      ReallyConvex π•œ (⇑f ⁻¹' s)
      theorem ReallyConvex.preimage {π•œ : Type u_1} {E : Type u_3} {Eβ‚‚ : Type u_4} [Semiring π•œ] [PartialOrder π•œ] [AddCommMonoid E] [Module π•œ E] [AddCommMonoid Eβ‚‚] [Module π•œ Eβ‚‚] [IsOrderedRing π•œ] (f : E β†’β‚—[π•œ] Eβ‚‚) {s : Set Eβ‚‚} (hs : ReallyConvex π•œ s) :
      ReallyConvex π•œ (⇑f ⁻¹' s)
      theorem reallyConvex_iff_convex (π•œ : Type u_1) {E : Type u_2} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [Module π•œ E] {s : Set E} :
      ReallyConvex π•œ s ↔ Convex π•œ s