theorem
map_finsum
{β : Type u_1}
{α : Type u_2}
{γ : Type u_3}
[AddCommMonoid β]
[AddCommMonoid γ]
{G : Type u_4}
[FunLike G β γ]
[AddMonoidHomClass G β γ]
(g : G)
{f : α → β}
(hf : (Function.support f).Finite)
:
theorem
finprod_eq_prod_of_mulSupport_subset_of_finite
{α : Type u_1}
{M : Type u_2}
[CommMonoid M]
(f : α → M)
{s : Set α}
(h : Function.mulSupport f ⊆ s)
(hs : s.Finite)
:
theorem
finsum_eq_sum_of_support_subset_of_finite
{α : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
(f : α → M)
{s : Set α}
(h : Function.support f ⊆ s)
(hs : s.Finite)
:
theorem
finite_of_finprod_ne_one
{M : Type u_6}
{ι : Type u_7}
[CommMonoid M]
{f : ι → M}
(h : ∏ᶠ (i : ι), f i ≠ 1)
:
theorem
finite_of_finsum_ne_zero
{M : Type u_6}
{ι : Type u_7}
[AddCommMonoid M]
{f : ι → M}
(h : ∑ᶠ (i : ι), f i ≠ 0)
:
theorem
support_finite_of_finsum_eq_of_neZero
{M : Type u_6}
{ι : Type u_7}
[AddCommMonoid M]
{f : ι → M}
{x : M}
[NeZero x]
(h : ∑ᶠ (i : ι), f i = x)
:
theorem
Subsingleton.mulSupport_eq
{α : Type u_6}
{β : Type u_7}
[Subsingleton β]
[One β]
(f : α → β)
:
theorem
Subsingleton.support_eq
{α : Type u_6}
{β : Type u_7}
[Subsingleton β]
[Zero β]
(f : α → β)
:
theorem
support_finite_of_finsum_eq_one
{M : Type u_6}
{ι : Type u_7}
[NonAssocSemiring M]
{f : ι → M}
(h : ∑ᶠ (i : ι), f i = 1)
:
theorem
finsum_sum_filter
{α : Type u_6}
{β : Type u_7}
{M : Type u_8}
[AddCommMonoid M]
(f : β → α)
(s : Finset β)
[DecidableEq α]
(g : β → M)
:
theorem
sum_mem_reallyConvexHull
{𝕜 : Type u_1}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{s : Set E}
{ι : Type u_6}
{t : Finset ι}
{w : ι → 𝕜}
{z : ι → E}
(h₀ : ∀ i ∈ t, 0 ≤ w i)
(h₁ : ∑ i ∈ t, w i = 1)
(hz : ∀ i ∈ t, z i ∈ s)
:
theorem
reallyConvexHull_mono
{𝕜 : Type u_1}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
:
def
ReallyConvex
(𝕜 : Type u_6)
{E : Type u_7}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
(s : Set E)
:
Generalization of Convex
to semirings. We only add the s = ∅
clause if 𝕜
is trivial.
Equations
Instances For
@[simp]
theorem
reallyConvex_empty
{𝕜 : Type u_1}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
:
@[simp]
theorem
reallyConvex_univ
{𝕜 : Type u_1}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
:
theorem
Nontrivial.reallyConvex_iff
{𝕜 : Type u_1}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{s : Set E}
[Nontrivial 𝕜]
:
theorem
Subsingleton.reallyConvex
{𝕜 : Type u_1}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{s : Set E}
[Subsingleton 𝕜]
:
ReallyConvex 𝕜 s
theorem
reallyConvex_iff_hull
{𝕜 : Type u_1}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{s : Set E}
[Nontrivial 𝕜]
:
theorem
ReallyConvex.sum_mem
{𝕜 : Type u_1}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{s : Set E}
[Nontrivial 𝕜]
(hs : ReallyConvex 𝕜 s)
{ι : Type u_6}
{t : Finset ι}
{w : ι → 𝕜}
{z : ι → E}
(h₀ : ∀ i ∈ t, 0 ≤ w i)
(h₁ : ∑ i ∈ t, w i = 1)
(hz : ∀ i ∈ t, z i ∈ s)
:
theorem
ReallyConvex.finsum_mem
{𝕜 : Type u_1}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{s : Set E}
[Nontrivial 𝕜]
(hs : ReallyConvex 𝕜 s)
{ι : Type u_6}
{w : ι → 𝕜}
{z : ι → E}
(h₀ : ∀ (i : ι), 0 ≤ w i)
(h₁ : ∑ᶠ (i : ι), w i = 1)
(hz : ∀ i ∈ Function.support w, z i ∈ s)
:
theorem
ReallyConvex.add_mem
{𝕜 : Type u_1}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{s : Set E}
(hs : ReallyConvex 𝕜 s)
{w₁ w₂ : 𝕜}
{z₁ z₂ : E}
(hw₁ : 0 ≤ w₁)
(hw₂ : 0 ≤ w₂)
(hw : w₁ + w₂ = 1)
(hz₁ : z₁ ∈ s)
(hz₂ : z₂ ∈ s)
:
theorem
ReallyConvex.inter
{𝕜 : Type u_1}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{s t : Set E}
(hs : ReallyConvex 𝕜 s)
(ht : ReallyConvex 𝕜 t)
:
ReallyConvex 𝕜 (s ∩ t)
theorem
ReallyConvex.preimageₛₗ
{𝕜 : Type u_1}
{𝕜' : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{E' : Type u_5}
[AddCommMonoid E']
[OrderedSemiring 𝕜']
[Module 𝕜' E']
(σ : 𝕜 →+*o 𝕜')
(f : E →ₛₗ[σ.toRingHom] E')
{s : Set E'}
(hs : ReallyConvex 𝕜' s)
:
ReallyConvex 𝕜 (⇑f ⁻¹' s)
theorem
ReallyConvex.preimage
{𝕜 : Type u_1}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{E₂ : Type u_4}
[AddCommMonoid E₂]
[Module 𝕜 E₂]
(f : E →ₗ[𝕜] E₂)
{s : Set E₂}
(hs : ReallyConvex 𝕜 s)
:
ReallyConvex 𝕜 (⇑f ⁻¹' s)
theorem
reallyConvex_iff_convex
(𝕜 : Type u_1)
{E : Type u_2}
[LinearOrderedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
{s : Set E}
: