The cross-product on an oriented real inner product space of dimension three #
def
Orientation.crossProduct
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[Fact (Module.finrank ℝ E = 3)]
(ω : Orientation ℝ E (Fin 3))
:
Linear map from E
to E →ₗ[ℝ] E
constructed from a 3-form Ω
on E
and an identification of
E
with its dual. Effectively, the Hodge star operation. (Under appropriate hypotheses it turns
out that the image of this map is in 𝔰𝔬(E)
, the skew-symmetric operators, which can be identified
with Λ²E
.)
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Orientation.crossProduct_apply_self
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[Fact (Module.finrank ℝ E = 3)]
(ω : Orientation ℝ E (Fin 3))
(v : E)
:
theorem
Orientation.inner_crossProduct_apply
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[Fact (Module.finrank ℝ E = 3)]
(ω : Orientation ℝ E (Fin 3))
(u v w : E)
:
theorem
Orientation.inner_crossProduct_apply_self
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[Fact (Module.finrank ℝ E = 3)]
(ω : Orientation ℝ E (Fin 3))
(u : E)
(v : ↥(Submodule.span ℝ {u})ᗮ)
:
theorem
Orientation.inner_crossProduct_apply_apply_self
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[Fact (Module.finrank ℝ E = 3)]
(ω : Orientation ℝ E (Fin 3))
(u : E)
(v : ↥(Submodule.span ℝ {u})ᗮ)
:
def
Orientation.crossProduct'
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[Fact (Module.finrank ℝ E = 3)]
(ω : Orientation ℝ E (Fin 3))
:
The map crossProduct
, upgraded from linear to continuous-linear; useful for calculus.
Equations
Instances For
@[simp]
theorem
Orientation.crossProduct'_apply
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[Fact (Module.finrank ℝ E = 3)]
(ω : Orientation ℝ E (Fin 3))
(v : E)
:
theorem
Orientation.norm_crossProduct
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[Fact (Module.finrank ℝ E = 3)]
(ω : Orientation ℝ E (Fin 3))
(u : E)
(v : ↥(Submodule.span ℝ {u})ᗮ)
:
theorem
Orientation.isometry_on_crossProduct
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
[Fact (Module.finrank ℝ E = 3)]
(ω : Orientation ℝ E (Fin 3))
(u : ↑(Metric.sphere 0 1))
(v : ↥(Submodule.span ℝ {↑u})ᗮ)
: