@[simp]
theorem
forall_mem_span_singleton
{R : Type u_1}
[CommRing R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
(P : M → Prop)
(u : M)
:
theorem
span_singleton_eq_span_singleton_of_ne
{𝕜 : Type u_1}
[Field 𝕜]
{M : Type u_2}
[AddCommGroup M]
[Module 𝕜 M]
{u v : M}
(hu : u ≠ 0)
(hu' : u ∈ Submodule.span 𝕜 {v})
:
theorem
LinearIsometryEquiv.apply_ne_zero
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
(φ : E ≃ₗᵢ⋆[ℝ] F)
{x : E}
(hx : x ≠ 0)
:
@[reducible]
The line (one-dimensional submodule of E
) spanned by x : E
.
Instances For
@[reducible]
The orthogonal complement of the line spanned by x : E
.
Equations
- spanOrthogonal x = (spanLine x)ᗮ
Instances For
@[reducible]
The orthogonal projection to the complement of span x
.
Equations
Instances For
theorem
orthogonal_line_inf
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
{u v : E}
:
theorem
orthogonal_line_inf_sup_line
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
(u v : E)
:
theorem
orthogonalProjection_eq_zero_of_mem
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
{F : Submodule ℝ E}
[CompleteSpace ↥F]
{x : E}
(h : x ∈ Fᗮ)
:
theorem
inner_projection_self_eq_zero_iff
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
{F : Submodule ℝ E}
[CompleteSpace ↥F]
{x : E}
:
@[simp]
theorem
mem_orthogonal_span_singleton_iff
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
{x₀ x : E}
:
@[simp]
theorem
orthogonalProjection_orthogonal_singleton
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
{x y : E}
:
theorem
coe_orthogonalProjection_orthogonal_singleton
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
{x y : E}
:
theorem
foo
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
{x₀ x : E}
(h : inner x₀ x ≠ 0)
(y : E)
(hy : y ∈ spanOrthogonal x₀)
:
def
orthogonalProjectionOrthogonalLineIso
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
{x₀ x : E}
(h : inner x₀ x ≠ 0)
:
Given two non-orthogonal vectors in an inner product space,
orthogonal_projection_orthogonal_line_iso
is the continuous linear equivalence between their
orthogonal complements obtained from orthogonal projection.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
orthogonalProjection_comp_coe
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
(K : Submodule ℝ E)
[CompleteSpace ↥K]
:
theorem
NormedSpace.continuousAt_iff
{E : Type u_2}
{F : Type u_3}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
(f : E → F)
(x : E)
:
theorem
NormedSpace.continuousAt_iff'
{E : Type u_2}
{F : Type u_3}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
(f : E → F)
(x : E)
:
theorem
NormedSpace.continuous_iff
{E : Type u_2}
{F : Type u_3}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
(f : E → F)
:
theorem
NormedSpace.continuous_iff'
{E : Type u_2}
{F : Type u_3}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
(f : E → F)
:
theorem
continuousAt_orthogonalProjection_orthogonal
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℝ E]
{x₀ : E}
(hx₀ : x₀ ≠ 0)
:
ContinuousAt (fun (x : E) => (spanOrthogonal x).subtypeL.comp (projSpanOrthogonal x)) x₀