Documentation

SphereEversion.ToMathlib.Analysis.InnerProductSpace.Projection

theorem eq_zero_of_mem_disjoint {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {F G : Submodule R M} (h : F G = ) {x : M} (hx : x F) (hx' : x G) :
x = 0
@[simp]
theorem forall_mem_span_singleton {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] (P : MProp) (u : M) :
(∀ xSubmodule.span R {u}, P x) ∀ (t : R), P (t u)
@[simp]
theorem Field.exists_unit {𝕜 : Type u_1} [Field 𝕜] (P : 𝕜Prop) :
(∃ (u : 𝕜ˣ), P u) ∃ (u : 𝕜), u 0 P u
theorem span_singleton_eq_span_singleton_of_ne {𝕜 : Type u_1} [Field 𝕜] {M : Type u_2} [AddCommGroup M] [Module 𝕜 M] {u v : M} (hu : u 0) (hu' : u Submodule.span 𝕜 {v}) :
theorem LinearIsometryEquiv.apply_ne_zero {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace F] (φ : E ≃ₗᵢ⋆[] F) {x : E} (hx : x 0) :
φ x 0
@[reducible]

The line (one-dimensional submodule of E) spanned by x : E.

Equations
Instances For
    @[reducible]

    The orthogonal complement of the line spanned by x : E.

    Equations
    Instances For
      @[reducible]

      The orthogonal projection to the complement of span x.

      Equations
      Instances For
        @[simp]
        @[simp]
        theorem orthogonalProjection_orthogonal_singleton {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] {x y : E} :
        (projSpanOrthogonal x) y = y - (inner x y / inner x x) x,
        theorem foo {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] {x₀ x : E} (h : inner x₀ x 0) (y : E) (hy : y spanOrthogonal x₀) :
        ((projSpanOrthogonal x) y) - (inner x₀ ((projSpanOrthogonal x) y) / inner x₀ x) x = y

        Given two non-orthogonal vectors in an inner product space, orthogonal_projection_orthogonal_line_iso is the continuous linear equivalence between their orthogonal complements obtained from orthogonal projection.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem NormedSpace.continuousAt_iff {E : Type u_2} {F : Type u_3} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] (f : EF) (x : E) :
          ContinuousAt f x ε > 0, δ > 0, ∀ (y : E), y - x < δf y - f x < ε
          theorem NormedSpace.continuousAt_iff' {E : Type u_2} {F : Type u_3} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] (f : EF) (x : E) :
          ContinuousAt f x ε > 0, δ > 0, ∀ (y : E), y - x δf y - f x ε
          theorem NormedSpace.continuous_iff {E : Type u_2} {F : Type u_3} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] (f : EF) :
          Continuous f ∀ (x : E), ε > 0, δ > 0, ∀ (y : E), y - x < δf y - f x < ε
          theorem NormedSpace.continuous_iff' {E : Type u_2} {F : Type u_3} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] (f : EF) :
          Continuous f ∀ (x : E), ε > 0, δ > 0, ∀ (y : E), y - x δf y - f x ε