theorem
PartialHomeomorph.exists_contDiff_source_univ_target_subset_ball
{F : Type u_1}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
[FiniteDimensional ℝ F]
(c : F)
(r : ℝ)
:
def
diffeomorphToNhd
{F : Type u_1}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
[FiniteDimensional ℝ F]
(c : F)
(r : ℝ)
:
A variant of InnerProductSpace.diffeomorphToNhd
which provides a function satisfying the
weaker condition range_diffeomorph_to_nhd_subset_ball
but which applies to any NormedSpace
.
In fact one could demand this stronger property but it would be more work and we don't need it.
Equations
- diffeomorphToNhd c r = ⋯.choose
Instances For
@[simp]
theorem
diffeomorphToNhd_source
{F : Type u_1}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
[FiniteDimensional ℝ F]
(c : F)
(r : ℝ)
:
@[simp]
theorem
diffeomorphToNhd_apply_zero
{F : Type u_1}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
[FiniteDimensional ℝ F]
(c : F)
(r : ℝ)
:
theorem
target_diffeomorphToNhd_subset_ball
{F : Type u_1}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
[FiniteDimensional ℝ F]
(c : F)
{r : ℝ}
(hr : 0 < r)
:
@[simp]
theorem
range_diffeomorphToNhd_subset_ball
{F : Type u_1}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
[FiniteDimensional ℝ F]
(c : F)
{r : ℝ}
(hr : 0 < r)
:
@[simp]
theorem
contDiff_diffeomorphToNhd
{F : Type u_1}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
[FiniteDimensional ℝ F]
(c : F)
(r : ℝ)
{n : ℕ∞}
:
ContDiff ℝ ↑n ↑(diffeomorphToNhd c r)
@[simp]
theorem
contDiffOn_diffeomorphToNhd_inv
{F : Type u_1}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
[FiniteDimensional ℝ F]
(c : F)
(r : ℝ)
{n : ℕ∞}
:
ContDiffOn ℝ (↑n) (↑(diffeomorphToNhd c r).symm) (diffeomorphToNhd c r).target